Answer:
T = 215.33 °C
Explanation:
The activation energy is given by the Arrhenius equation:

<u>Where:</u>
k: is the rate constant
A: is the frequency factor
Ea: is the activation energy
R: is the gas constant = 8.314 J/(K*mol)
T: is the temperature
We have for the uncatalyzed reaction:
Ea₁ = 70 kJ/mol
And for the catalyzed reaction:
Ea₂ = 42 kJ/mol
T₂ = 20 °C = 293 K
The frequency factor A is constant and the initial concentrations are the same.
Since the rate of the uncatalyzed reaction (k₁) is equal to the rate of the catalyzed reaction (k₂), we have:

(1)
By solving equation (1) for T₁ we have:
Therefore, we need to heat the solution at 215.33 °C so that the rate of the uncatalyzed reaction is equal to the rate of the catalyzed reaction.
I hope it helps you!
The heat is involved in the production of 5.0 mol of MgO is 180 Kj
calculation
2 Mg (s) +O2 → 2 MgO
From the equation above two moles of MgO is used therefore
72.3 is for 2 moles
that is 72.3 kj = 2moles
? = 5 moles
by cross multiplication
= 72.3 kj × 5/2 = 180 Kj
Answer:
2.08 moles (3 s.f.)
Explanation:
number of moles
= number of atoms ÷ Avogadro's constant
Avogadro's constant= 6.022 ×10²³
Thus, number of moles
= 1.25×10²⁴ ÷ (6.022 ×10²³)
= 2.08 moles (3 s.f.)
Answer:
See explanation
Explanation:
When the complex ion Co(H2O)6 2+(aq) is placed in solution and chloride ions are added, the following equilobrium is set up;
Co(H2O)62+(aq) + 4 Cl-(aq) <=> CoCl42-(aq) + 6 H2O(g)
Co(H2O)6 2+(aq) solution is pink in colour while CoCl42-(aq) solution is blue in colour.
Since the solubility of CoCl42-(aq) is endothermic, heating the solution will move the equilibrium position towards the right (more CoCl42-(aq) is formed and the solution is blue in colour).
When the solution is cooled, more Co(H2O)62+(aq) is formed and the equilibrium position shifts towards the left and the solution becomes pink in colour.