Answer:
four million two hundred and thirty
Explanation:
Answer:
100.8 °C
Explanation:
The Clausius-clapeyron equation is:
-Δ
Where 'ΔHvap' is the enthalpy of vaporization; 'R' is the molar gas constant (8.314 j/mol); 'T1' is the temperature at the pressure 'P1' and 'T2' is the temperature at the pressure 'P2'
Isolating for T2 gives:

(sorry for 'deltaHvap' I can not input symbols into equations)
thus T2=100.8 °C
Answer:
When the pressure increases to 90.0 atm , the volume of the sample is 0.01467L
Explanation:
To answer the question, we note that
P₁ = 1.00 atm
V₁ = 1.32 L
P₂ = 90 atm.
According to Boyle's law, at constant temperature, the volume of gas is inversely proportional to its pressure
That is P₁V₁ = P₂V₂
Solving the above equation for V₂ we have
that is V₂ =
=
or 0.01467L
Answer:
2.4 mol x 22.4 liter = 53.76 liters
1 mole
Explanation: