Respuesta:
340 N/cm²
Explicación:
Paso 1: Información provista
Peso de la estructura (F): 8500 Newton
Area superficial (A): 25 cm²
Paso 2: Calcular la presión (P) ejercida por la estructura de concreto sobre su base
La presión es igual al cociente entre la fuerza ejercida y la superficie sobre la que se aplica.
P = F/A
P = 8500 N / 25 cm² = 340 N/cm²
<span>Feb 19, 2014 - The units of k tell you that this is a second order reaction. So, to solve this, you need to use the integrated rate law for a 2nd order reaction: 1/[A] = kt + 1/[A]o 1/[A] = 0.540/Ms (835 s) + 1/0.00640 1/[A] = 607 [A] = 1.65X10^-3 M.</span><span>
</span>
If a solution is saturated, that means it already posses the maximum number of solutes thus have been dissolved in it, and thus the concentration cannot be increased.
We have as a reagent a salt, lead nitrate (Pb(NO3)2), and an unknown solution that gives us as a product lead chloride (PbCl2). That is, the solution must contain chlorine.
If a chlorine solution is used we will have the following reaction:

So, with a chlorine solution, we will have a white precipitate of lead chloride.
Answer:
8.934 g
Step-by-step explanation:
We know we will need a balanced equation with masses and molar masses, so let’s gather all the information in one place.
M_r: 192.12 44.01
H₃C₆H₅O₇ + 3NaHCO₃ ⟶ Na₃C₆H₅O₇ + 3H₂O + 3CO₂
m/g: 13.00
For ease of writing, let's write H₃C₆H₅O₇ as H₃Cit.
(a) Calculate the <em>moles of H₃Cit
</em>
n = 13.00 g × (1 mol H₃Cit /192.12 g H₃Cit)
n = 0.067 67 mol H₃Cit
(b) Calculate the <em>moles of CO₂
</em>
The molar ratio is (3 mol CO₂/1 mol H₃Cit)
n = 0.067 67 mol H₃Cit × (3 mol CO₂/1 mol H₃Cit)
n = 0.2030 mol CO₂
(c) Calculate the <em>mass of CO₂
</em>
m = 0.2030 mol CO₂ × (44.01 g CO₂/1 mol CO₂)
m = 8.934 g CO₂