<span>The function of a hypothesis is to create a testable statement. In that, a hypothesis can be followed up by a experiment. Hypotheses can be used in order to determine if there is a result of an affect, this is the independent variable, what you get out is the dependent variable, or the result. There is a control that is used generally as a means to test your hypothesis to a standard.</span>
To answer the question above, multiply the given number of moles by the molar masses.
(A) (0.20 mole) x (32 g / 1 mole) = 6.4 grams O2
(B) (0.75 mole) x (62 g / 1 mole) = 46.5 grams H2CO3
(C) (3.42 moles) x (28 g / 1 mole) = 95.7 grams CO
(D) (4.1 moles) x (29.88 g / 1 mole) = 122.508 g Li2O
The answer to the question above is letter D.
Answer :
(a) The average rate will be:
![\frac{d[Br_2]}{dt}=9.36\times 10^{-5}M/s](https://tex.z-dn.net/?f=%5Cfrac%7Bd%5BBr_2%5D%7D%7Bdt%7D%3D9.36%5Ctimes%2010%5E%7B-5%7DM%2Fs)
(b) The average rate will be:
![\frac{d[H^+]}{dt}=1.87\times 10^{-4}M/s](https://tex.z-dn.net/?f=%5Cfrac%7Bd%5BH%5E%2B%5D%7D%7Bdt%7D%3D1.87%5Ctimes%2010%5E%7B-4%7DM%2Fs)
Explanation :
The general rate of reaction is,

Rate of reaction : It is defined as the change in the concentration of any one of the reactants or products per unit time.
The expression for rate of reaction will be :
![\text{Rate of disappearance of A}=-\frac{1}{a}\frac{d[A]}{dt}](https://tex.z-dn.net/?f=%5Ctext%7BRate%20of%20disappearance%20of%20A%7D%3D-%5Cfrac%7B1%7D%7Ba%7D%5Cfrac%7Bd%5BA%5D%7D%7Bdt%7D)
![\text{Rate of disappearance of B}=-\frac{1}{b}\frac{d[B]}{dt}](https://tex.z-dn.net/?f=%5Ctext%7BRate%20of%20disappearance%20of%20B%7D%3D-%5Cfrac%7B1%7D%7Bb%7D%5Cfrac%7Bd%5BB%5D%7D%7Bdt%7D)
![\text{Rate of formation of C}=+\frac{1}{c}\frac{d[C]}{dt}](https://tex.z-dn.net/?f=%5Ctext%7BRate%20of%20formation%20of%20C%7D%3D%2B%5Cfrac%7B1%7D%7Bc%7D%5Cfrac%7Bd%5BC%5D%7D%7Bdt%7D)
![\text{Rate of formation of D}=+\frac{1}{d}\frac{d[D]}{dt}](https://tex.z-dn.net/?f=%5Ctext%7BRate%20of%20formation%20of%20D%7D%3D%2B%5Cfrac%7B1%7D%7Bd%7D%5Cfrac%7Bd%5BD%5D%7D%7Bdt%7D)
![Rate=-\frac{1}{a}\frac{d[A]}{dt}=-\frac{1}{b}\frac{d[B]}{dt}=+\frac{1}{c}\frac{d[C]}{dt}=+\frac{1}{d}\frac{d[D]}{dt}](https://tex.z-dn.net/?f=Rate%3D-%5Cfrac%7B1%7D%7Ba%7D%5Cfrac%7Bd%5BA%5D%7D%7Bdt%7D%3D-%5Cfrac%7B1%7D%7Bb%7D%5Cfrac%7Bd%5BB%5D%7D%7Bdt%7D%3D%2B%5Cfrac%7B1%7D%7Bc%7D%5Cfrac%7Bd%5BC%5D%7D%7Bdt%7D%3D%2B%5Cfrac%7B1%7D%7Bd%7D%5Cfrac%7Bd%5BD%5D%7D%7Bdt%7D)
From this we conclude that,
In the rate of reaction, A and B are the reactants and C and D are the products.
a, b, c and d are the stoichiometric coefficient of A, B, C and D respectively.
The negative sign along with the reactant terms is used simply to show that the concentration of the reactant is decreasing and positive sign along with the product terms is used simply to show that the concentration of the product is increasing.
The given rate of reaction is,

The expression for rate of reaction :
![\text{Rate of disappearance of }Br^-=-\frac{1}{5}\frac{d[Br^-]}{dt}](https://tex.z-dn.net/?f=%5Ctext%7BRate%20of%20disappearance%20of%20%7DBr%5E-%3D-%5Cfrac%7B1%7D%7B5%7D%5Cfrac%7Bd%5BBr%5E-%5D%7D%7Bdt%7D)
![\text{Rate of disappearance of }BrO_3^-=-\frac{d[BrO_3^-]}{dt}](https://tex.z-dn.net/?f=%5Ctext%7BRate%20of%20disappearance%20of%20%7DBrO_3%5E-%3D-%5Cfrac%7Bd%5BBrO_3%5E-%5D%7D%7Bdt%7D)
![\text{Rate of disappearance of }H^+=-\frac{1}{6}\frac{d[H^+]}{dt}](https://tex.z-dn.net/?f=%5Ctext%7BRate%20of%20disappearance%20of%20%7DH%5E%2B%3D-%5Cfrac%7B1%7D%7B6%7D%5Cfrac%7Bd%5BH%5E%2B%5D%7D%7Bdt%7D)
![\text{Rate of formation of }Br_2=+\frac{1}{3}\frac{d[Br_2]}{dt}](https://tex.z-dn.net/?f=%5Ctext%7BRate%20of%20formation%20of%20%7DBr_2%3D%2B%5Cfrac%7B1%7D%7B3%7D%5Cfrac%7Bd%5BBr_2%5D%7D%7Bdt%7D)
![\text{Rate of formation of }H_2O=+\frac{1}{3}\frac{d[H_2O]}{dt}](https://tex.z-dn.net/?f=%5Ctext%7BRate%20of%20formation%20of%20%7DH_2O%3D%2B%5Cfrac%7B1%7D%7B3%7D%5Cfrac%7Bd%5BH_2O%5D%7D%7Bdt%7D)
Thus, the rate of reaction will be:
![\text{Rate of reaction}=-\frac{1}{5}\frac{d[Br^-]}{dt}=-\frac{d[BrO_3^-]}{dt}=-\frac{1}{6}\frac{d[H^+]}{dt}=+\frac{1}{3}\frac{d[Br_2]}{dt}=+\frac{1}{3}\frac{d[H_2O]}{dt}](https://tex.z-dn.net/?f=%5Ctext%7BRate%20of%20reaction%7D%3D-%5Cfrac%7B1%7D%7B5%7D%5Cfrac%7Bd%5BBr%5E-%5D%7D%7Bdt%7D%3D-%5Cfrac%7Bd%5BBrO_3%5E-%5D%7D%7Bdt%7D%3D-%5Cfrac%7B1%7D%7B6%7D%5Cfrac%7Bd%5BH%5E%2B%5D%7D%7Bdt%7D%3D%2B%5Cfrac%7B1%7D%7B3%7D%5Cfrac%7Bd%5BBr_2%5D%7D%7Bdt%7D%3D%2B%5Cfrac%7B1%7D%7B3%7D%5Cfrac%7Bd%5BH_2O%5D%7D%7Bdt%7D)
<u>Part (a) :</u>
<u>Given:</u>
![\frac{1}{5}\frac{d[Br^-]}{dt}=1.56\times 10^{-4}M/s](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B5%7D%5Cfrac%7Bd%5BBr%5E-%5D%7D%7Bdt%7D%3D1.56%5Ctimes%2010%5E%7B-4%7DM%2Fs)
As,
![-\frac{1}{5}\frac{d[Br^-]}{dt}=+\frac{1}{3}\frac{d[Br_2]}{dt}](https://tex.z-dn.net/?f=-%5Cfrac%7B1%7D%7B5%7D%5Cfrac%7Bd%5BBr%5E-%5D%7D%7Bdt%7D%3D%2B%5Cfrac%7B1%7D%7B3%7D%5Cfrac%7Bd%5BBr_2%5D%7D%7Bdt%7D)
and,
![\frac{d[Br_2]}{dt}=\frac{3}{5}\frac{d[Br^-]}{dt}](https://tex.z-dn.net/?f=%5Cfrac%7Bd%5BBr_2%5D%7D%7Bdt%7D%3D%5Cfrac%7B3%7D%7B5%7D%5Cfrac%7Bd%5BBr%5E-%5D%7D%7Bdt%7D)
![\frac{d[Br_2]}{dt}=\frac{3}{5}\times 1.56\times 10^{-4}M/s](https://tex.z-dn.net/?f=%5Cfrac%7Bd%5BBr_2%5D%7D%7Bdt%7D%3D%5Cfrac%7B3%7D%7B5%7D%5Ctimes%201.56%5Ctimes%2010%5E%7B-4%7DM%2Fs)
![\frac{d[Br_2]}{dt}=9.36\times 10^{-5}M/s](https://tex.z-dn.net/?f=%5Cfrac%7Bd%5BBr_2%5D%7D%7Bdt%7D%3D9.36%5Ctimes%2010%5E%7B-5%7DM%2Fs)
<u>Part (b) :</u>
<u>Given:</u>
![\frac{1}{5}\frac{d[Br^-]}{dt}=1.56\times 10^{-4}M/s](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B5%7D%5Cfrac%7Bd%5BBr%5E-%5D%7D%7Bdt%7D%3D1.56%5Ctimes%2010%5E%7B-4%7DM%2Fs)
As,
![-\frac{1}{5}\frac{d[Br^-]}{dt}=-\frac{1}{6}\frac{d[H^+]}{dt}](https://tex.z-dn.net/?f=-%5Cfrac%7B1%7D%7B5%7D%5Cfrac%7Bd%5BBr%5E-%5D%7D%7Bdt%7D%3D-%5Cfrac%7B1%7D%7B6%7D%5Cfrac%7Bd%5BH%5E%2B%5D%7D%7Bdt%7D)
and,
![-\frac{1}{6}\frac{d[H^+]}{dt}=\frac{3}{5}\frac{d[Br^-]}{dt}](https://tex.z-dn.net/?f=-%5Cfrac%7B1%7D%7B6%7D%5Cfrac%7Bd%5BH%5E%2B%5D%7D%7Bdt%7D%3D%5Cfrac%7B3%7D%7B5%7D%5Cfrac%7Bd%5BBr%5E-%5D%7D%7Bdt%7D)
![\frac{d[H^+]}{dt}=\frac{6}{5}\times 1.56\times 10^{-4}M/s](https://tex.z-dn.net/?f=%5Cfrac%7Bd%5BH%5E%2B%5D%7D%7Bdt%7D%3D%5Cfrac%7B6%7D%7B5%7D%5Ctimes%201.56%5Ctimes%2010%5E%7B-4%7DM%2Fs)
![\frac{d[H^+]}{dt}=1.87\times 10^{-4}M/s](https://tex.z-dn.net/?f=%5Cfrac%7Bd%5BH%5E%2B%5D%7D%7Bdt%7D%3D1.87%5Ctimes%2010%5E%7B-4%7DM%2Fs)
Answer is A
You never run down adjacent to you spinal cord and bones. That’s where they are the most protected. There are also holes in the pelvis bone for nerves to pass through
Answer:
earth I think like that because earth is the second planet