Q1. An inorganic compound is a compound where the main constituent or substance is not that of Carbon but predominantly other elements, such as I, N etc. An organic compound is one where the main substituent or main element, the element found in much greater amounts would be Carbon.
Q2. Water is considered a very good solvent, because of its ability to dissolve well with mostly all other polar compounds, and produce ions from those ionic compounds.
A. Hydrogen atoms
B. Oxygen atom.
Answer:
This question is incomplete but the completed question is below
Which Of These Species Is Most Likely To Be A Lewis Acid And Is Also Least Likely To Be A Brønsted Acid? (A) NH4⁺ (B) BF₃ (C) H₂O (D) OH⁻
The correct option is B
Explanation:
A lewis acid is a substance that accepts (or is capable of accepting) a pair of electrons. For example BF₃, while a lewis base is a substance that donates (or is capable of donating) a pair of electrons. For example OH⁻.
If we take a look at the boron (B) in BF₃, it has 3 electrons on it's outermost shell, each of which are bonded to flourine and can still accept a pair of electrons (lone pair). <u>This makes it very likely to be a lewis acid</u>.
Bronsted lowry acid is a substance that donates or can donate a proton or H⁺ (for example HCl) while bronsted lowry base is a substance that accepts or can accept a proton or H⁺ (for example NH₃).
<u>BF₃ cannot donate a proton or H⁺ hence it is least likely to be called a bronsted acid.</u>
Gamma rays contain much more energy (most penetrating) than radio waves because they have a greater frequencies.
Radio waves are the electromagnetic waves with the longest wavelengths (1dm to 100 km), lowest frequencies (3kHz to 3GHz) and lowest energy (124 peV to <span>12,4 μeV).
</span>Gamma rays are the electromagnetic waves with the shortest wavelengths (1 pm), highest frequencies (300 EHz) and highest energy (1,24 Me<span>V</span>).
This problem could be solved easily using the Henderson-Hasselbach equation used for preparing buffer solutions. The equation is written below:
pH = pKa + log[(salt/acid]
Where salt represents the molarity of salt (sodium lactate), while acid is the molarity of acid (lactic acid).
Moles of salt = 1 mol/L * 25 mL * 1 L/1000 mL = 0.025 moles salt
Moles of acid = 1 mol/L* 60 mL * 1 L/1000 mL = 0.06 moles acid
Total Volume = (25 mL + 60 mL)*(1 L/1000 mL) = 0.085 L
Molarity of salt = 0.025 mol/0.085 L = 0.29412 M
Molarity of acid = 0.06 mol/0.085 L = 0.70588 M
Thus,
pH = 3.86 + log(0.29412/0.70588)
pH = 3.48
The correct answer is <span>Antoine-Laurent de Lavoisier. Hope this helps!</span>