SrSo4 = Sr(2+) + SO4(2-)
Let’s say that the initial concentration of SrSo4 was 1. ( or we have 1 mole of this reagent).
When The reaction occurs part of SrSo4is dissociated. And we get X mole Sr(2+) and So4(2-).
Ksp=[Sr(2+)]*[SO4(2-)]
X^2=3.2*10^-7
X=5.6*10^-4
A solution is a homogeneous type of mixture of two or more substances. A solution has two parts: a solute and a solvent.
Answer:
C = (5/9) F - (160/9)
They both read equal at Z = - 40
Explanation:
We are looking for a linear function so we can write the following condition
Y = aX + b
Applying it to the exercise we got C = a F + b
Let's use the facts that C = 0 when F = 32 and C = 100 when F = 212
0 = 32 a + b (1)
100 = 212 a + b (2)
From (1) b = - 32 a , when we replace this in (2) we obtain a = (5/9)
and b = - (5/9)32 = - 160/9
Finally the linear function is C = (5/9) F - (160/9)
Both readings are equal at a Z number so
Z = (5/9) Z - 160/9
(4/9) Z = -160/9 and Z = - 40
.sand and water
.iron fillings in a liquid
.cereal in milk
As we move down the group, the metallic bond becomes more stable and the formation of forming covalent bond decreases down the group due to the large size of elements.
Covalent and metallic bonding leads to higher melting points. Due to a decrease in attractive forces from carbon to lead there is a drop in melting point.
Carbon forms large covalent molecules than silicon and hence has a higher melting point than silicon.
Similarly, Ge also forms a large number of covalent bonds and has a smaller size as compared to that of Sn. Hence melting point decreases from Ge to Sn.
The order will be C>Si>Ge>Pb>Sn.
To learn more about the covalent bond, visit: brainly.com/question/10777799
#SPJ4