In any redox reaction, the substance that undergoes reduction will 3) <span> gain electrons and have a decrease in oxidation number.</span>
To calculate this,
We know that energy is 1 photon
E = hc/wavelenth
wavelength of 10.0 m
Solution:
h = 6.626 x 10^-34 Jsec
C = 2.9979 x 10^8 m/sec
E = 6.626 10^-34 * 2.9979 10^8 / 10 = 1.9864 10^-26J
Then, the number of photons is computed by:
n = 1000 / 1.9864 10^-26 = 5.04 10^28 photons
Answer:
1. Increasing the concentration of the acid
2. Increasing the temperature
Explanation:
CaCO₃ + 2HCl ⟶ CaCl₂ + H₂O + CO₂
Increasing the concentration of the acid increases the number of hydronium ions in contact with the surface of the CaCO₃ per unit time.
Increasing the temperature increases the kinetic energy of the hydronium ions, so they hit the surface of the CaCO₃ mor frequently and with greater force.
3. is wrong. The bigger the pieces, the smaller the surface area that is available for reaction.
Answer:
0.1739
Explanation:
0.800 mol of N2
0.200 mol of H2
0.150 mol of CH4
Total moles of the mixture = 0.8 + 0.2 + 0.150 = 1.150 mol
Mole fraction of H2 = Number of moles of H2 / Total moles
Mole Fraction = 0.2 / 1.150 = 0.1739
Energy lost to condense = 803.4 kJ
<h3>Further explanation</h3>
Condensation of steam through 2 stages:
1. phase change(steam to water)
2. cool down(100 to 0 C)
1. phase change(condensation)
Lv==latent heat of vaporization for water=2260 J/g

2. cool down
c=specific heat for water=4.18 J/g C

Total heat =
