Answer:
71.7 L
Explanation:
Using the ideal gas equation;
PV = nRT
Where;
P = pressure (atm)
V = volume (L)
n = number of moles (mol)
R = gas law constant (0.0821 Latm/Kmol)
T = temperature (K)
According to the information provided in this question;
P = 1 atm (STP)
V = ?
n = 3.2mol
T = 273K (STP)
Using PV = nRT
V = nRT/P
V = 3.2 × 0.0821 × 273/1
V = 71.7 L
The answer to this item is TRUE. This can be explained through the Graham's law. This law states that the rate at which gases diffuse is inversely proportional to the square root of their densities which is also related to their molecular masses.
Isotopes of elements where the nucleas is unstable generally release nuclear radiation. So unstable atoms
Answer: Universal law refers to as legal legitimacy, where those principles and rules are for governing the country. They are most universal in (AATPB) acceptability, applicability, translation, and philosophical basis. They are also considered to be most legitimate.
So basically the answer is A
They are in effect all the time.
Explanation:
Hopefully this helps you
pls mark brainlest
Answer:
K = 137.55 atm/M.
Explanation:
- The relationship between gas pressure and the concentration of dissolved gas is given by Henry’s law:
<em>P = (K)(C)</em>
where P is the partial pressure of the gaseous solute above the solution (P = 1.0 atm).
k is a constant (Henry’s constant).
C is the concentration of the dissolved gas (C = 7.27 x 10⁻³ M).
∴ K = P/C = (1.0 atm)/(7.27 x 10⁻³ M) = 137.55 atm/M.