According to the task, you are proveded with patial pressure of CO2 and graphite, and here is complete solution for the task :
At first you have to find n1 =moles of CO2 and n2 which are moles of C
<span>The you go :
</span>

n1 n2 0
-x -x +2x

After that you have to use the formula

Then you have to solve x, and for that you have to use <span>RT/V
And to find total values:</span>

I am absolutely sure that this would be helpful for you.
Answer: To solve this question, we need to use the Avogadro's Number, which is a constant first discovered by Amadeo Avogadro, an Italian scientist. He discovered that in a mole of a substance, there are 6,02*10²³ molecules. Using this relationship, we apply the following conversion factor:
So, 8,50 * 10²⁴ molecules of Na₂SO₃ represent 14,12 moles of Na₂SO₃
Explanation:
Answer:
Either Carnivores or Heterotrophic.
Explanation:
Carnivorous organisms are the more obvious answers in this, but if you want a bit of pizazz, throw in Heterotrophic Fungi.
Answer:
use secondary data. the normal method to use