Answer:
The dependent variable is the number of clams developing from fertilized eggs.
The independent variable is the water temperature
The optimum temperature for clam development is 30 degrees centigrade.
Explanation:
The graph of the number of clams developing from fertilized eggs and water temperature is attached to this answer.
The independent variable is being manipulated in an experiment. As it changes, it produces a corresponding change in the dependent variable.
Here, the water temperature is the independent variable. As it changes, the number of clams developing from fertilized eggs (dependent variable) also changes alongside.
The optimum temperature is the temperature at which the greatest number of clams developing from fertilized eggs is produced. We can see from the graph that this temperature is 30 degrees centigrade.
Answer:
V = 1.434 L
Explanation:
Given data:
Mass of argon = 4.24 g
Temperature = 58.2 °C
Pressure = 1528 torr
Volume = ?
Solution:
58.2 °C = 58.2 + 273 = 331.2 K
1528/760= 2.01 atm
<em>Number of moles:</em>
Number of moles = mass/molar mass
Number of moles = 4.24 g / 39.948 g/mol
Number of moles = 0.106 mol
<em>Volume:</em>
PV = nRT
V = nRT/P
V = 0.106 mol ×0.0821. atm. L. mol⁻¹. K⁻¹ × 331.2K/ 2.01 atm
V = 2.88 atm L/ 2.01 atm
V = 1.434 L
Answer:
184.113 g/mol
Explanation: The atomic mass of Mg is 24.3 amu. The atomic mass of bromine is 79.9. Therefore, the formula weight of MgBr2 equals 24.3 amu + (2 × 79.9 amu), or 184.1 amu. Because a substance's molar mass has the same numerical value as its formula weight, the molar mass of MgBr2 equals 184.1 g/mol.
Answer:
Number of particles = 2.0 g*(6.0 x 10^23 particles/mol) / 20.18 g/mol
Option C is correct
Explanation:
Step 1: Data give
Mass of Ne = 2.0 grams
Molar mass of neon = 20.18 g/mol
Number of Avogadro = 6.0 *10^23 /mol
Step 2: Calculate number of moles of neon
Moles Ne = Mass of ne / Molar mass of ne
Moles Ne = 2.0 / 20.18 g/mol
Moles Ne = 0.099 moles
Step 3: Calculate nulber of particles
Number of particles = 6.022*10^23 / mol * 0.099 moles = 5.96 *10^22
Number of particles = 6.022*10^23 * (2.0g/ 20.18g/mol)
Number of particles = 2.0 g*(6.0 x 10^23 particles/mol) / 20.18 g/mol
Option C is correct
Li(s) (answer A)
Li is strongest reducing agent because of the lowest standard reduction potential. when something is oxidized, it reduces another substance, becoming a reducing.Hence Lithium is strongest reducing agent. Reducing agent is stronger when it has a more positive oxidation potential.