Answer:
The factors of 2q²-5pq-2q+5p are (2q-5p) (q-1)....
Step-by-step explanation:
The given expression is:
2q²-5pq-2q+5p
Make a pair of first two terms and last two terms:
(2q²-5pq) - (2q-5p)
Now factor out the common factor from each group.
Note that there is no common factor in second group. So we will take 1 as a common factor.
q(2q-5p) -1(2q-5p)
Now factor the polynomial by factoring out the G.C.F, 2q-5p
(2q-5p) (q-1)
Thus the factors of 2q²-5pq-2q+5p are (2q-5p) (q-1)....
Answer:
- 176
Step-by-step explanation:
2 + 4/5 x 15 - 190
= 2 + (4/5 x 15) - 190
= 2 + (12) - 190
= 2 + 12 - 190
= 14 - 190
= - 176
Step-by-step explanation:
G(x) =4(2x)-6
G(x)=8x-6
Answer:
(b) 1.95
Step-by-step explanation:
One of the easiest ways to evaluate an arithmetic expression of almost any kind is to type it into an on-line calculator. Many times, typing it into a search box is equivalent.
<h3>Application</h3>
See the attachment for the search box input (at top) and the result. This calculator has the benefit that it <em>always follows the Order of Operations</em> when evaluating an expression. (Not all calculators do.)
ln(7) ≈ 1.95
__
<em>Additional comment</em>
If your math course is asking you to evaluate such expressions, you have probably been provided a calculator to use, or given the requirements for a calculator suitable for use in the course.
There are some very nice calculator apps for phone and tablet. Many phones and tablets already come with built-in calculator apps. For the purpose here, you need a "scientific" or "graphing" calculator. A 4-function calculator will not do.
As with any tool, it is always a good idea to read the manual for your calculator and work through any example problems.
__
Years ago, handheld calculators were not available, and most desktop calculators were only capable of the basic four arithmetic functions. Finding a logarithm required use of a table of logarithms. Such tables were published in mathematical handbooks, and extracts of those often appeared as appendices in math textbooks used in school.
M∠NQS = m∠BQS - m∠BQN = 78 - 48 = 30°