Answer:
The Riemann sum equals -10.
Step-by-step explanation:
The right Riemann Sum uses the right endpoints of a sub-interval:

where

To find the Riemann sum for
with n = 5 rectangles, using right endpoints you must:
We know that a = -6, b = 4 and n = 5, so

We need to divide the interval −6 ≤ x ≤ 4 into n = 5 sub-intervals of length 
![a=\left[-6, -4\right], \left[-4, -2\right], \left[-2, 0\right], \left[0, 2\right], \left[2, 4\right]=b](https://tex.z-dn.net/?f=a%3D%5Cleft%5B-6%2C%20-4%5Cright%5D%2C%20%5Cleft%5B-4%2C%20-2%5Cright%5D%2C%20%5Cleft%5B-2%2C%200%5Cright%5D%2C%20%5Cleft%5B0%2C%202%5Cright%5D%2C%20%5Cleft%5B2%2C%204%5Cright%5D%3Db)
Now, we just evaluate the function at the right endpoints:





Finally, just sum up the above values and multiply by 2

The Riemann sum equals -10