Answer : The dissociation constant of the PFK‑inhibitor complex is, 5 µM
Explanation :
The expression for reversible competitive inhibition when apparent Km affected by addition of the inhibitor is:
![K_m_a=K_m[1+\frac{I}{K_i}]](https://tex.z-dn.net/?f=K_m_a%3DK_m%5B1%2B%5Cfrac%7BI%7D%7BK_i%7D%5D)
where,
= apparent value = 52 µM
= Michaelis–Menten constant = 40 µM
I = inhibitor concentration = 1.5 µM
= dissociation constant of the PFK‑inhibitor complex
Now put all the given values in the above formula, we get:
![52\mu M=40\mu M[1+\frac{1.5\mu M}{K_i}]](https://tex.z-dn.net/?f=52%5Cmu%20M%3D40%5Cmu%20M%5B1%2B%5Cfrac%7B1.5%5Cmu%20M%7D%7BK_i%7D%5D)

Therefore, the dissociation constant of the PFK‑inhibitor complex is, 5 µM
answer:
because it benefits the soil. the long alfalfa stand life also gives the soil a chance to rest from frequent field crop rotations, helps provide nitrogen for subsequent crops, and improves soil tilth. this helps prevent pesticide and sediment movement to natural waterways.
good luck :)
hopefully, this helps
have a great day !!
Answer:
Sorry, I'm confused there has to be more to it if there is not then there is no true way for anyone to fill in the blanks. <3
Answer:
Some of these proteins serve to transport materials into or out of the cell. Carbohydrates are attached to some of the proteins and lipids on the outward-facing surface of the membrane. These form complexes that function to identify the cell to other cells.