Answer:
( p - 4 ) ( p - 12 ) = 0
Step-by-step explanation:
To factor this equation, let's apply the quadratic formula.
p^2 - 16p + 48 = 0
Let a = 1, b = -16, c = 48
[-b +/- sqrt(b^2 - 4(a)(c))] / 2 (a)
[- (-16) +/- sqrt( (-16)^2 - 4(1)(48)) ] / 2 (1)
= [ 16 +/- sqrt( 256 - 192) ] / 2
= [ 16 +/- sqrt(64) ] / 2
= [16 +/- 8] / 2
p = (16 + 8) / 2 ; p = (16 - 8) / 2
p = 24 / 2 ; p = 8 / 2
p = 12 ; p = 4
Hence, this equation factors into the following:
( p - 4 ) ( p - 12 ) = 0
Cheers.