Answer:
∠DRM=45°
Step-by-step explanation:
Given: PRST is a parallelogram, m∠T:m∠R=1:3, RD ⊥ PS , RM ⊥ ST.
To find: m∠DRM
Solution: Since, PRST is a parallelogram and then let m∠T=x then m∠R=3x.
From the figure, we get that m∠T+m∠R=180°(Adjacent angles)
x+3x=180°
x=45°
Therefore, m∠T=45° and m∠R=135°.
Also, in parallelogram, opposite angles are equal, therefore m∠R=m∠S=135°.
Now, We know that sum of all the angles of the parallelogram =360°, then
From the quadrilateral DRMS,
∠DRM+∠RMS+∠MSD+∠SDR=360°
∠DRM+90°+135°+90°=360°
∠DRM=360°-315°
∠DRM=45°