Answer:
The answer to the question is
The rate constant for the reaction is 1.056×10⁻³ M/s
Explanation:
To solve the question, e note that
For a zero order reaction, the rate law is given by
[A] = -k×t + [A]₀
This can be represented by the linear equation y = mx + c
Such that y = [A], m which is the gradient is = -k, and the intercept c = [A]₀
Therefore the rate constant k which is the gradient is given by
Gradient =
where [A]₁ = 8.10×10⁻² M and [A]₂ = 1.80×10⁻³ M
=
= -0.001056 M/s = -1.056×10⁻³ M/s
Threfore k = 1.056×10⁻³ M/s
Answer:
MIXTURE
Explanation:
A mixture is a substance composed of a combination of other different substances. These component(s) of a mixture are physically combined, meaning that there is no chemical linkage between the individual components/constituents of a mixture.
This is the case of the gravel described in this question. The components of gravel can be separated using physical means because they are not chemically bonded to one another, hence, no chemical reactions are needed to separate different parts of gravel into pure substances. This makes gravel a MIXTURE.
Rubisco is an important enzyme that helps in making lifeless carbon of carbon dioxide into organic molecules. Rubisco takes carbon dioxide and attaches it to ribulose bisphosphate, a
short sugar chain with five carbon atoms that has rubp as its shortcut. Rubisco then clips the
lengthened chain into to polyglycerate pices, which are pretty flexible molecules and are also used in the feeding of the plant. Most of it is used in the photosynthesis pathway, but some of it is used to make sucrose
(table sugar) to feed the rest of the plant, or stored away in the form
of starch for later use. Hence, rubisco is crucial in the storing of the energy that is created from photosynthesis.
Answer:
Molecular formula
Explanation:
Molecular formula in the first place is required to understand which compound we have. We then should refer to the periodic table and find the molecular weight for each atom. Adding individual molecular weights together would yield the molar mass of a compound.
Then, dividing the total molar mass of a specific atom by the molar mass of a compound and converting into percentage will provide us with the percentage of that specific atom.
E. g., calculate the percent composition of water:
- molecular formula is
; - calculate its molar mass: [tex]M = 2M_H + M_O = 2\cdot 1.00784 g/mol + 16.00 g/mol = 18.016 g/mol;
- find the percentage of hydrogen: [tex]\omega_H = \frac{2\cdot 1.00784 g/mol}{18.016 g/mol}\cdot 100 \% = 11.19 %;
- find the percentage of oxygen: [tex]\omega_O = \frac{16.00 g/mol}{18.016 g/mol}\cdot 100 \% = 88.81 %.
Ph= -log[h30]
Ph= -log[1.7x10^-4]
pH= 3.77
pH is acidic