Answer:
The nucleus, that dense central core of the atom, contains both protons and neutrons.
So to answer your question yes it does contain all of the protons in the atom.
* Hopefully this helps:) Mark me the brainliest:)!
I believe the correct answer from the choices listed above is option B. The best explanation for this happening would be that air <span>particles speed up and collide with the tire walls more often. As the particles are heated, kinetic energy increases. Hope this answers the question. Have a nice day.</span>
Answer: The ion formed after the reduction of bromine is 
Explanation:
The electronic configuration of Sodium (Na) = ![[Ne]3s^1](https://tex.z-dn.net/?f=%5BNe%5D3s%5E1)
The electronic configuration of Bromine (Br) = ![[Ar]3d^{10}4s^24p^5](https://tex.z-dn.net/?f=%5BAr%5D3d%5E%7B10%7D4s%5E24p%5E5)
From the above configurations, Sodium ion will loose 1 electron in order to gain stable electronic configuration and that electron is accepted by the Bromine atom because it is 1 electron short of the stable electronic configuration.
(oxidation reaction)
(Reduction reaction)
Bromine atom is reduced to form 
Reduction reactions are the reactions in which the element gain electrons.
Oxidation reactions are the reactions in which the element looses its electrons.
Answer:
1.52M in NaCl
Explanation:
Molarity = moles solute / volume solution in Liters
=> molarity (M) = 3.8 moles / 2.5 Liters solution = 1.52 molar solution in NaCl
Answer:
HF - hydrogen bonding
CBr4 - Dispersion
NF3 - Dipole-dipole
Explanation:
Hydrogen bonding occurs when hydrogen is covalently bonded to a highly electronegative atom such as fluorine, chlorine nitrogen, oxygen etc. Hence the dominant intermolecular force in HF is hydrogen bonding.
CBr4 is nonpolar because the molecule is tetrahedral and the individual C-Br dipole moments cancel out leaving the molecule with a zero dipole moment hence the dominant intermolecular force are the dispersion forces.
NF3 has a resultant dipole moment hence the molecules are held together by dipole-dipole interaction.