No, x-rays do not travel slower than infrared radiation or even the opposite. Both are travelling in vacuum therefore they travel at same speed. They differ in the frequency of the electromagnetic waves.
The molar mass of the gas is 77.20 gm/mole.
Explanation:
The data given is:
P = 3.29 atm, V= 4.60 L T= 375 K mass of the gas = 37.96 grams
Using the ideal Gas Law will give the number of moles of the gas. The formula is
PV= nRT (where R = Universal Gas Constant 0.08206 L.atm/ K mole
Also number of moles is not given so applying the formula
n= mass ÷ molar mass of one mole of the gas.
n = m ÷ x ( x molar mass) ( m mass given)
Now putting the values in Ideal Gas Law equation
PV = m ÷ x RT
3.29 × 4.60 = 37.96/x × 0.08206 × 375
15.134 = 1168.1241 ÷ x
15.134x = 1168.1241
x = 1168.1241 ÷ 15.13
x = 77.20 gm/mol
If all the units in the formula are put will get cancel only grams/mole will be there. Molecular weight is given by gm/mole.
Answer:- 1.62 moles
Solution:- At constant temperature and pressure, volume is directly proportional to the moles of the gas.

from given data,
= 5.17 L,
= 1.05 moles
= 8.00 L,
= ?
Let's plug in the values in the formula:

On cross multiply:

= 1.62 moles
So, now the toy contains 1.62 moles of the air.
Answer:
B. gas state at room temperature
Explanation:
The mass of one mole of water it is 18 amu, but you need to find the mass of a molecule of water, therefore you calculate the mass of one mole of water, which is 18 amu and you divided by Avogadro's number which is 6,022 x 10^23. The result is 2,989 x 10^-23. Hope I helped you. If you have any questions ask :) Good luck.