The number of grams of radon 222 did it have 15.2 ago was 49.6 grams( answer C)
<u>calculation</u>
- calculate the number of half life it has covered from 15.2 days to 3.8 days
that is divide 15.2/ 3.8 = 4 half life
- half life is time taken for a radio activity of a specified isotope to fall to half its original mass
therefore 3.8 days ago it was 3.1 x2 = 6.2 grams
7.6 days ago it was 6.2 x2 = 12.4 grams
11.4 days ago it was 12.4 x2= 24.8 grams
15.2 days ago it was 24.8 x2=49.6 grams
Answer:
1) Fe = 69.9%
O = 31.1%
2) H = 5.19%
O = 16.5%
N = 28.9%
C = 49.5%
Explanation:
One easy way to do percent compositions is to assume you have 100g of a substance.
1) Lets say we have 100g of Fe2O3.
The total molar mass would be:

The molar mass of the Fe2 alone is:

Thus, the grams of Fe2(out of a 100) could be calculated by multiplying 100g * the molar mass ratio of Fe2 to the whole:

Which is approximately 69.9%.
We can find the amount of O3 by simply subtracting, as the rest of the compound is made of O3. Thus, the % composition of O3 is 31.1%
You can then do this same process to the next question, getting us the following:
H = 5.19%
O = 16.5%
N = 28.9%
C = 49.5%
The factor in determining the average atomic mass of an element is:
B or 2 relative abundance of each isotope because the by looking at how many protons , electrons and neutrons the most isotope is of the element has relative abundance.
The answer for the following questions is explained below.
Explanation:
The two variables that affect kinetic energy are:
- mass and
- velocity
- velocity - The faster an object moves,the more the kinetic energy it has.
- mass - Kinetic energy increases as mass increases
The kinetic energy of an object depends on both its mass and its velocity
Kinetic energy increases as mass increases
For example,think about rolling a bowling ball and a golf ball down a bowling lane at same velocity
Here,the bowling ball has more mass than the golf ball
Therefore you use more energy to roll the bowling ball than to roll the golf ball
The bowling ball is more likely to knock down the pins because it has more kinetic energy than the golf ball
Answer:
a. True
b. True
c. False
d. True
Explanation:
a). A a very low substrate concentration ,
. Thus according to the Machaelis-Menten equation becomes
![$V_0 = \frac{V_{max} \times [S]}{Km}$](https://tex.z-dn.net/?f=%24V_0%20%3D%20%5Cfrac%7BV_%7Bmax%7D%20%5Ctimes%20%5BS%5D%7D%7BKm%7D%24)
Here since the
varies directly to the substrate concentration [S], the initial velocity is lower than the maximal velocity. Thus option (a) is true.
b). The Michaelis -Menten kinetics equation states that :
![$V_0 = \frac{V_{max} \times [S]}{Km+[S]}$](https://tex.z-dn.net/?f=%24V_0%20%3D%20%5Cfrac%7BV_%7Bmax%7D%20%5Ctimes%20%5BS%5D%7D%7BKm%2B%5BS%5D%7D%24)
Here the initial velocity changes directly with the substrate concentration as
is directly proportional to [S]. But
is same for any particular concentration of the enzymes. Thus, option (b) is true.
c). As the substrate concentration increases, the initial velocity also increases. Thus option (c) is false.
d). Option (d) explains the procedures to estimate the initial velocity which is correct. Thus, option (d) is true.