#82
here we know that
acceleration = 2 m/s/s
time = 5 s
initial speed = 4 m/s
now we can use kinematics to find the final speed



So correct answer will be option D)
#83
here we know that
acceleration = 3 m/s/s
time = 4 s
initial speed = 5 m/s
now we can use kinematics to find the final speed



So correct answer will be option C)
#84
here we know that
acceleration = 7 m/s/s
time = 3 s
initial speed = 8 m/s
now we can use kinematics to find the final speed



So correct answer will be option C)
Answer: A: The Mass of Object AND D. The amount of motion it’s particles have
Answer: Throwing some cargo out of the boa
Explanation:Pushing its mast, Pushing the front of the boat, Pushing another passenger are the forces in internal frame. Forces in the internal frame will not push the boat.
Throwing some cargo out of the boat will create force in external frame of the boat. This external force will push the boat and boat starts moving.
Answer:
When touching the bar magnet ,the nail gets attached to the magnet from its metallic field is used to connect when taylor touched the nail to the bar magnet,the magnetic fields were ranged,and made a temporary magnet.
Explanation:
Answer:
The speed of the car B after the collision is same as the speed of the car A before collision.
Explanation:
lets take the mass of the car A = m kg
Initial speed of the car A = u m/s
The mass of the car B = m kg
Initial speed of the car A = 0 m/s
The final speed of the car A = 0 m/s
The final speed of the car B = v
There is no any external force on the masses that is why the linear momentum will be conserve.
Initial linear momentum = Final linear momentum
P = mass x velocity
m u + m x 0 = m x 0 + m v
m u + 0 = 0 + m v
m u = m v
v= u
Therefore we can say that ,the speed of the car B after the collision is same as the speed of the car A before collision.