Answer:
Explanation:
Given that:
the temperature
= 250 °C= ( 250+ 273.15 ) K = 523.15 K
Pressure = 1800 kPa
a)
The truncated viral equation is expressed as:

where; B = -
C = -5800 
R = 8.314 × 10³ cm³ kPa. K⁻¹.mol⁻¹
Plugging all our values; we have


Multiplying through with V² ; we have


V = 2250.06 cm³ mol⁻¹
Z = 
Z = 
Z = 0.931
b) The truncated virial equation [Eq. (3.36)], with a value of B from the generalized Pitzer correlation [Eqs. (3.58)–(3.62)].
The generalized Pitzer correlation is :












The compressibility is calculated as:


Z = 0.9386


V = 2268.01 cm³ mol⁻¹
c) From the steam tables (App. E).
At 
V = 0.1249 m³/ kg
M (molecular weight) = 18.015 gm/mol
V = 0.1249 × 10³ × 18.015
V = 2250.07 cm³/mol⁻¹
R = 729.77 J/kg.K
Z = 
Z = 
Z = 0.588
1) cobalt u can tell bc on a periodic table there is a small number that on cobalt is 27.
2) think that would be 11 bc in the 4th shell there can be up to 18 electrons
Hey there!
To find the density of an object, you must use this formula:
Density=Mass/Volume
Knowing that your mass is 128.3741, the only information you need left would be to find the volume of the cube.
Because the side length of the cube is given, you can multiply the length three times in order to find its volume:
1.25*1.25*1.25
=1.953125
Now that you have your volume and mass, divide the mass by the volume to find the density:
128.3741/1.953125
=65.7275392
Therefore, your density would be 65.7275392 grams per inches cubed.