Answer:
2.99 M
Explanation:
In order to solve this problem we need to keep in mind the definition of molarity:
- Molarity = moles of solute / liters of solution
In order to calculate the moles of solute, we <u>convert 125.6 g of NaF into moles</u> using its <em>molar mass</em>:
- 125.6 g NaF ÷ 42 g/mol = 2.99 mol NaF
As the volume is already given, we can proceed to <em>calculate the molarity</em>:
- Molarity = 2.99 mol / 1.00 L = 2.99 M
Non metals and metollids in periodic tables are the same how this helps ;)
What are organic and inorganic compounds? Organic chemistry is the study of the carbon compounding molecules. Inorganic chemistry, by contrast, is the study of all compounds that do NOT contain carbon compounds.
This problem is providing the basic dissociation constant of ibuprofen (IB) as 5.20, its pH as 8.20 and is requiring the equilibrium concentration of the aforementioned drug by giving the chemical equation at equilibrium it takes place. The obtained result turned out to be D) 4.0 × 10−7 M, according to the following work:
First of all, we set up an equilibrium expression for the given chemical equation at equilibrium, in which water is omitted for it is liquid and just aqueous species are allowed to be included:
Next, we calculate the concentration of hydroxide ions and the Kb due to the fact that both the pH and pKb were given:
Then, since the concentration of these ions equal that of the conjugated acid of the ibuprofen (IBH⁺), we can plug in these and the Kb to obtain:
Finally, we solve for the equilibrium concentration of ibuprofen:
Learn more:
(Weak base equilibrium calculation) brainly.com/question/9426156
1 mole of any gas under STP ----- 22.4 L
18.65 L*1 mol/22.4 L ≈ 0.8326 mol N2