Answer:
The y-coordinate of the solution is, 10
Step-by-step explanation:
Given the system of equation:
....[1]
....[2]
Equate the equation [1] and [2] we have;
![-2x+4 = x^2+4x+13](https://tex.z-dn.net/?f=-2x%2B4%20%3D%20x%5E2%2B4x%2B13)
Add 2x to both sides of an equation:
![4 = x^2+6x+13](https://tex.z-dn.net/?f=4%20%3D%20x%5E2%2B6x%2B13)
Subtract 4 from both sides we have;
![0= x^2+6x+9](https://tex.z-dn.net/?f=0%3D%20x%5E2%2B6x%2B9)
or
![x^2+6x+9=0](https://tex.z-dn.net/?f=x%5E2%2B6x%2B9%3D0)
Using perfect square:
![(x+a)^2 = x^2+2ax+a^2](https://tex.z-dn.net/?f=%28x%2Ba%29%5E2%20%3D%20x%5E2%2B2ax%2Ba%5E2)
⇒We can write the equation as:
![x^2+2 \cdot 3x+3^2=0](https://tex.z-dn.net/?f=x%5E2%2B2%20%5Ccdot%203x%2B3%5E2%3D0)
then;
![(x+3)^2 = 0](https://tex.z-dn.net/?f=%28x%2B3%29%5E2%20%3D%200)
⇒![x+3 = 0](https://tex.z-dn.net/?f=x%2B3%20%3D%200)
Subtract 3 from both sides we have;
x = -3
Substitute value of x in [1] we have;
⇒
Solution for the given system of equation = (-3, 10)
Therefore, the y-coordinate of the solution is, 10