Answer:
When i cat climbs a tree it is using energy that was stored away. When you eat you are storing that energy in the food. when you cimb a tree you are burning calorius from that meal.
Answer:
Option b, The change in free energy of the reaction (ΔG)
Explanation:
Gibbs free energy is a measure of amount of usable energy in the system.
It is related with enthalpy (H), entropy (S) and temprature (T) as:
G = H - TS
The Gibbs free energy change (ΔG) provide spontaneity of a chemical reaction.
If ΔG is negative, then reaction is spontaneous that means reaction is moving towards forward direction.
If ΔG is positive, then reaction is non-spontaneous that means reaction is moving in backward direction.
If ΔG is zero, then reaction is at equilibrium.
Change in enthalpy only gives informtion about heat involed in a chemical reaction, it does not give information about direction of the reaction.
So, among the given options, option b is correct.
The kinetic energy of the products is equal to the energy liberated which is 92.2 keV. But let's convert the unit keV to Joules. keV is kiloelectro volt. The conversion that we need is: 1.602×10⁻¹⁹ <span>joule = 1 eV
Kinetic energy = 92.2 keV*(1,000 eV/1 keV)*(</span>1.602×10⁻¹⁹ joule/1 eV) = 5.76×10²³ Joules
From kinetic energy, we can calculate the velocity of each He atom:
KE = 1/2*mv²
5.76×10²³ Joules = 1/2*(4)(v²)
v = 5.367×10¹¹ m/s
Answer:
3.45 moles Li contains 2.08 × 10 (to the power of)24 atoms .
Explanation:
The relationship between atoms and moles is:
1 mole atoms =
6.022 × 10 (to the power of)23
atoms
In order to determine how many atoms occupy a given number of moles, multiply the given moles by
6.022 × 10 (to the power of)23
atoms/mole
.
In the case of 3.45 moles lithium (Li):
3.45 mol Li × 6.022 × 10 (to the power of)23 atoms Li/ 1 mol Li =
2.08 × 10 (to the power of)24
atoms Li rounded to three