Answer:
The following are the solution to the given points:
Step-by-step explanation:
for point A:


The set A is not part of the subspace 
for point B:


The set B is part of the subspace
for point C:

In this, the scalar multiplication can't behold

∉ C
this inequality is not hold
The set C is not a part of the subspace
for point D:

The scalar multiplication s is not to hold
∉ D
this is an inequality, which is not hold
The set D is not part of the subspace 
For point E:

The
is the arbitrary, in which
is arbitrary

The set E is the part of the subspace
For point F:

The
arbitrary so, they have
as the arbitrary 
The set F is the subspace of 
A vertical line that the graph of a function approaches but never intersects. The correct option is B.
<h3>When do we get vertical asymptote for a function?</h3>
Suppose that we have the function f(x) such that it is continuous for all input values < a or > a and have got the values of f(x) going to infinity or -ve infinity (from either side of x = a) as x goes near a, and is not defined at x = a, then at that point, there can be constructed a vertical line x = a and it will be called as vertical asymptote for f(x) at x = a
A vertical asymptote can be described as a vertical line that the graph of a function approaches but never intersects.
Hence, the correct option is B.
Learn more about Vertical Asymptotes:
brainly.com/question/2513623
#SPJ1
Total coverage = 0.85 x 185,000 = $157,250
Coverage for Loss of Use = 0.25 x 157250 = $39,312.50
It's the one on the top righr, -2/9 w + 2/15.
Answer:100 L-?
Step-by-step explanation: