-secx} " align="absmiddle" class="latex-formula"> +

=

1 answer:
We have the <span> Trigonometric Identities : </span>secx = 1/cosx; (sinx)^2 + (cosx)^2 = 1;
Then, 1 / (1-secx) = 1 / ( 1 - 1/cosx) = 1 / [(cosx - 1)/cosx] = cosx /
(cosx - 1 ) ;
Similar, 1 / (1+secx) = cosx / (1 + cosx) ;
cosx / (cosx - 1) + cosx / (1 + cosx) = [cosx(1 + cosx) + cosx (cosx - 1)] / [ (cosx - 1)(cox + 1)] =[cosx( 1 + cosx + cosx - 1 )] / [ (cosx - 1)(cox + 1)] = 2(cosx)^2 / [(cosx)^2 - (sinx)^2] = <span> 2(cosx)^2 / (-1) = - 2(cosx)^2;
</span>
You might be interested in
Answer:
15.8333333333
Step-by-step explanation:
9.5 divied by 3.5
Answer:
Step-by-step explanation:
Answer:
5
Step-by-step explanation:
hope this helps
Step-by-step explanation:
1. 250×4=1000
2.125×8=1000
3. 25×40=1000
4. 500×2=1000
5. 200×5=1000
6. 50×20=1000
How much do they spend though