Answer: 
Step-by-step explanation:
Given
inclination is 
Mountain is
high
Cable is tied
from the base of the mountain
From the figure, length of the shortest path is 
It is given by using Pythagoras theorem

Answer:
y = 8 degrees
Step-by-step explanation:
128 + 7y - 4 = 180
7y - 4 = 52
7y + 56
y = 8
Answer: Choice B
Range = {-3, 1, 5}
============================================
Explanation:
The domain is the set of all possible input x values. The range is the set of all possible y outputs.
Plug in each x value from the domain, one at a time, to get its corresponding range y value.
--------------------
Start with x = -3
f(x) = 2x+3
f(-3) = 2(-3)+3
f(-3) = -6+3
f(-3) = -3
So -3 is in the range.
--------------------
Move onto x = -1
f(x) = 2x+3
f(-1) = 2(-1)+3
f(-1) = -2+3
f(-1) = 1
1 is also in the range
--------------------
Finally plug in x = 1
f(x) = 2x+3
f(1) = 2(1)+3
f(1) = 2+3
f(1) = 5
The value 5 is the final value in the range.
--------------------
All of those values form the set {-3, 1, 5} which is the complete range.
Answer:
$22.84
Step-by-step explanation:
The tax is calculated by 0.075 * 21.25 = 1.59375 or $1.59. So the total bill is the cost of items purchased plus tax, which is $21.25 + $1.59 = $22.84.
Answer:
<h2>90</h2>
Step-by-step explanation:
