Answer:

Step-by-step explanation:
Given the expression ![\frac{\sqrt[5]{b} }{\sqrt[]{b} }](https://tex.z-dn.net/?f=%5Cfrac%7B%5Csqrt%5B5%5D%7Bb%7D%20%7D%7B%5Csqrt%5B%5D%7Bb%7D%20%7D)
![\frac{\sqrt[5]{b} }{\sqrt[]{b} } \\= \frac{b^{1/5}}{b^{1/2}} \\= b^{1/5-1/2}\\= b ^{2-5/10}\\= b^{-3/10}\\Compare \ b^n \ with \ b^{-3/10}\\\\n = -3/10](https://tex.z-dn.net/?f=%5Cfrac%7B%5Csqrt%5B5%5D%7Bb%7D%20%7D%7B%5Csqrt%5B%5D%7Bb%7D%20%7D%20%5C%5C%3D%20%5Cfrac%7Bb%5E%7B1%2F5%7D%7D%7Bb%5E%7B1%2F2%7D%7D%20%5C%5C%3D%20b%5E%7B1%2F5-1%2F2%7D%5C%5C%3D%20b%20%5E%7B2-5%2F10%7D%5C%5C%3D%20b%5E%7B-3%2F10%7D%5C%5CCompare%20%5C%20b%5En%20%5C%20with%20%5C%20%20b%5E%7B-3%2F10%7D%5C%5C%5C%5Cn%20%3D%20-3%2F10)
#10
15(1/3y-3/5x-2/3y+4/15x)
Calculate
15(-y/3-x/3)
Write all numerator over common denominator
15(-y+x/3)
Multiply by reducing
-5(y+x)
Multiply parenthesis by -5
-5y-5x
#11
24(2/3y-3/4x-2/8y+5/6x)
Reduce fraction
24(2/3y-3/4x-1/4y+5/6x)
Calculate
24(5/12y+x/12)
Multiply parenthesis by 24
10y + 2x
Answer:
A
Step-by-step explanation:
Because graphs are more technical