Put the numbers in order.
1, 2, 5, 6, 7, 9, 12, 15, 18, 19, 27.
Step 2: Find the median.
1, 2, 5, 6, 7, 9, 12, 15, 18, 19, 27.
Step 3: Place parentheses around the numbers above and below the median.
Not necessary statistically, but it makes Q1 and Q3 easier to spot.
(1, 2, 5, 6, 7), 9, (12, 15, 18, 19, 27).
Step 4: Find Q1 and Q3
Think of Q1 as a median in the lower half of the data and think of Q3 as a median for the upper half of data.
(1, 2, 5, 6, 7), 9, ( 12, 15, 18, 19, 27). Q1 = 5 and Q3 = 18.
Step 5: Subtract Q1 from Q3 to find the interquartile range.
18 – 5 = 13.
The answer is 32, depending on how you do the math will be different outcomes
Answer:
Solution for A combination lock uses 3 numbers, each of which can be 0 to 33. If there are no restrictions on the numbers, how many possible ...
Step-by-step explanation:
Answer:
Step-by-step explanation:
![CI=\left[\begin{array}{ccc}1&6&0\\0&1&2\\1&-1&3\end{array}\right] \left[\begin{array}{ccc}1&0&0\\0&1&0\\0&0&1\end{array}\right]](https://tex.z-dn.net/?f=CI%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%266%260%5C%5C0%261%262%5C%5C1%26-1%263%5Cend%7Barray%7D%5Cright%5D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%260%260%5C%5C0%261%260%5C%5C0%260%261%5Cend%7Barray%7D%5Cright%5D)
Subtract row 3 from row 1:
![\left[\begin{array}{ccc}1&6&0\\0&1&2\\0&7&-3\end{array}\right] \left[\begin{array}{ccc}1&0&0\\0&1&0\\1&0&-1\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%266%260%5C%5C0%261%262%5C%5C0%267%26-3%5Cend%7Barray%7D%5Cright%5D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%260%260%5C%5C0%261%260%5C%5C1%260%26-1%5Cend%7Barray%7D%5Cright%5D)
Subtract row 3 from 7 times row 2:
![\left[\begin{array}{ccc}1&6&0\\0&1&2\\0&0&17\end{array}\right] \left[\begin{array}{ccc}1&0&0\\0&1&0\\-1&7&1\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%266%260%5C%5C0%261%262%5C%5C0%260%2617%5Cend%7Barray%7D%5Cright%5D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%260%260%5C%5C0%261%260%5C%5C-1%267%261%5Cend%7Barray%7D%5Cright%5D)
Divide row 3 by 17:
![\left[\begin{array}{ccc}1&6&0\\0&1&2\\0&0&1\end{array}\right] \left[\begin{array}{ccc}1&0&0\\0&1&0\\\frac{-1}{17} &\frac{7}{17} &\frac{1}{17} \end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%266%260%5C%5C0%261%262%5C%5C0%260%261%5Cend%7Barray%7D%5Cright%5D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%260%260%5C%5C0%261%260%5C%5C%5Cfrac%7B-1%7D%7B17%7D%20%26%5Cfrac%7B7%7D%7B17%7D%20%26%5Cfrac%7B1%7D%7B17%7D%20%5Cend%7Barray%7D%5Cright%5D)
Subtract 2 of row 3 from row 2:
![\left[\begin{array}{ccc}1&6&0\\0&1&0\\0&0&1\end{array}\right] \left[\begin{array}{ccc}1&0&0\\\frac{2}{17} &\frac{3}{17} &\frac{-2}{17} \\\frac{-1}{17} &\frac{7}{17} &\frac{1}{17} \end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%266%260%5C%5C0%261%260%5C%5C0%260%261%5Cend%7Barray%7D%5Cright%5D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%260%260%5C%5C%5Cfrac%7B2%7D%7B17%7D%20%26%5Cfrac%7B3%7D%7B17%7D%20%26%5Cfrac%7B-2%7D%7B17%7D%20%5C%5C%5Cfrac%7B-1%7D%7B17%7D%20%26%5Cfrac%7B7%7D%7B17%7D%20%26%5Cfrac%7B1%7D%7B17%7D%20%5Cend%7Barray%7D%5Cright%5D)
Subtract 6 of row 2 from row 1:
![\left[\begin{array}{ccc}1&0&0\\0&1&0\\0&0&1\end{array}\right] \left[\begin{array}{ccc}\frac{5}{17}&\frac{-18}{17}&\frac{12}{17}\\\frac{2}{17} &\frac{3}{17} &\frac{-2}{17} \\\frac{-1}{17} &\frac{7}{17} &\frac{1}{17} \end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%260%260%5C%5C0%261%260%5C%5C0%260%261%5Cend%7Barray%7D%5Cright%5D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%5Cfrac%7B5%7D%7B17%7D%26%5Cfrac%7B-18%7D%7B17%7D%26%5Cfrac%7B12%7D%7B17%7D%5C%5C%5Cfrac%7B2%7D%7B17%7D%20%26%5Cfrac%7B3%7D%7B17%7D%20%26%5Cfrac%7B-2%7D%7B17%7D%20%5C%5C%5Cfrac%7B-1%7D%7B17%7D%20%26%5Cfrac%7B7%7D%7B17%7D%20%26%5Cfrac%7B1%7D%7B17%7D%20%5Cend%7Barray%7D%5Cright%5D)
![C^{-1}=\frac{1}{17} \left[\begin{array}{ccc}5&-18&12\\2&3&-2\\-1&7&1\end{array}\right]](https://tex.z-dn.net/?f=C%5E%7B-1%7D%3D%5Cfrac%7B1%7D%7B17%7D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D5%26-18%2612%5C%5C2%263%26-2%5C%5C-1%267%261%5Cend%7Barray%7D%5Cright%5D)
![C^{-1}b=\frac{1}{17} \left[\begin{array}{ccc}5&-18&12\\2&3&-2\\-1&7&1\end{array}\right]\left[\begin{array}{c}10&1&3\end{array}\right]=\left[\begin{array}{c}4&1&0\end{array}\right]](https://tex.z-dn.net/?f=C%5E%7B-1%7Db%3D%5Cfrac%7B1%7D%7B17%7D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D5%26-18%2612%5C%5C2%263%26-2%5C%5C-1%267%261%5Cend%7Barray%7D%5Cright%5D%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D10%261%263%5Cend%7Barray%7D%5Cright%5D%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D4%261%260%5Cend%7Barray%7D%5Cright%5D)
Answer:
In example when talking about some supply, half of it was sold or three fifths of what was there is gone. Fractions are a natural way of talking about sub unit quantities or just rationing supplies.