1. Find the cost of levelling the ground in the form of a triangle having the sides 51 m, 37 m and 20 m at the rate of ₹ 3 per m².
a = 51 m, b = 37 m, c = 20 m
semiperimeter: p = (51+37+20):2 = 54 m
Area of triangle:

Rate: ₹ 3 per m².
Cost: ₹ 3•306 = ₹ 918
2. Find the area of the isosceles triangle whose perimeter is 11 cm and the base is 5 cm.
a = 5 cm
a+2b = 11 cm ⇒ 2b = 6 cm ⇒ b = 3 cm
p = 11:2 = 5.5

3. Find the area of the equilateral triangle whose each side is 8 cm.
a = b = c = 8 cm
p = (8•3):2 = 12 cm

4. The perimeter of an isosceles triangle is 32 cm. The ratio of the equal side to its base is 3 : 2. Find the area of the triangle.
a = 2x
b = 3x
2x + 2•3x = 32 cm ⇒ 8x = 32 cm ⇒ x = 4 cm ⇒ a = 8 cm, b = 12 cm
p = 32:2 = 16 cm

Answer:
B
Step-by-step explanation:
The <u>Elimination Method</u> is the method for solving a pair of linear equations which reduces one equation to one that has only a single variable.
- If the coefficients of one variable are opposites, you add the equations to eliminate a variable, and then solve.
- If the coefficients are not opposites, then we multiply one or both equations by a number to create opposite coefficients, and then add the equations to eliminate a variable and solve.
When multoplying the equation by a coefficient, we multiply both sides of the equation (multiplying both sides of the equation by some nonzero number does not change the solution).
So, option B is not allowed (it is not allowed to multiply only one part of equation)
Step-by-step explanation:
85 is the answer you are looking for
Answer:
Up
Step-by-step explanation:
Here the easy rules to remember the orientation of the parabolas are
a) If x is squared it opens up or down. And its coefficient of {![x^{2}[tex] is negative it opens down.b) If y is squared it opens side ways right or left. It its coefficient of [tex]y^{2}](https://tex.z-dn.net/?f=x%5E%7B2%7D%5Btex%5D%20is%20negative%20it%20opens%20down.%3C%2Fp%3E%3Cp%3Eb%29%20If%20y%20is%20squared%20it%20opens%20side%20ways%20right%20or%20left.%20It%20its%20coefficient%20of%20%5Btex%5Dy%5E%7B2%7D)
Hence in our equation of parabola

x is squared and its coefficient is positive , hence it opens up towards positive y axis.
Answer:
on the x-axis
Step-by-step explanation:
it is located on the x axis because it is not technically in any quandrant. it is however, on an axis.