You need to use this formula:
([a]/[sinA])=([c]/[sinC])-I am going to use 'a' for the x, and 'c' for 16(square root of 3)
Now its just getting 'a' by itself.
([c] times [sinA])/([sinC])=[a]
[c]=16 square root of 3
sinA=sin(60)=(square root of 3)/2
sinC=sin(90)=1
Plug it in to get 24 for a, or x. Do the same to figure out y with the new sides.
The final y is:
8 square root of 3
Final answer is C.
You just have to multiply both by 2, and 3/4 = 6/8. 3 times 2 equals 6, and 4 times 2 equals 8. I hope I helped! :-)
Answer:
7/100
Step-by-step explanation:
Find the GCD (or HCF) of numerator and denominator
GCD of 70 and 100 is 10
Divide both the numerator and denominator by the GCD
70 ÷ 10
100 ÷ 10
Reduced fraction:
7
10
Therefore, 70/100 simplified to lowest terms is 7/10.
G divides each median in the ratio of 2 to 1 (the longer side goes from G to the angle)
triangle AMN is similar to triangle ABC (why?)
AMN is a scaled version of ABC (by a factor of ⅔)
its area should be scaled by (⅔)^2
Answer:
1. ![(\sqrt[5]{(m+2)})^{3} = (m+2)^{\frac{3}{5}}](https://tex.z-dn.net/?f=%28%5Csqrt%5B5%5D%7B%28m%2B2%29%7D%29%5E%7B3%7D%20%3D%20%20%28m%2B2%29%5E%7B%5Cfrac%7B3%7D%7B5%7D%7D)
2. ![(\sqrt[3]{(m+2)})^{5} = (m+2)^{\frac{5}{3}}](https://tex.z-dn.net/?f=%28%5Csqrt%5B3%5D%7B%28m%2B2%29%7D%29%5E%7B5%7D%20%3D%20%20%28m%2B2%29%5E%7B%5Cfrac%7B5%7D%7B3%7D%7D)
3. ![\sqrt[5]{(m)}^{3}+2 = m^{\frac{3}{5}}+2](https://tex.z-dn.net/?f=%5Csqrt%5B5%5D%7B%28m%29%7D%5E%7B3%7D%2B2%20%3D%20%20m%5E%7B%5Cfrac%7B3%7D%7B5%7D%7D%2B2)
4. ![\sqrt[3]{(m)}^{5}+2 = m^{\frac{5}{3}}+2](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B%28m%29%7D%5E%7B5%7D%2B2%20%3D%20%20m%5E%7B%5Cfrac%7B5%7D%7B3%7D%7D%2B2)
Step-by-step explanation:
Recall that
![(\sqrt[n]{x})^{m} = (x^{\frac{m}{n}})](https://tex.z-dn.net/?f=%28%5Csqrt%5Bn%5D%7Bx%7D%29%5E%7Bm%7D%20%3D%20%20%28x%5E%7B%5Cfrac%7Bm%7D%7Bn%7D%7D%29)
Where
is called radicand and n is called index
1. Root(5, (m + 2) ^ 3)
In this case,
n is 5
m is 3
x = (m + 2)
![(\sqrt[5]{(m+2)})^{3} = (m+2)^{\frac{3}{5}}](https://tex.z-dn.net/?f=%28%5Csqrt%5B5%5D%7B%28m%2B2%29%7D%29%5E%7B3%7D%20%3D%20%20%28m%2B2%29%5E%7B%5Cfrac%7B3%7D%7B5%7D%7D)
2. Root(3, (m + 2) ^ 5)
In this case,
n is 3
m is 5
x = (m + 2)
![(\sqrt[3]{(m+2)})^{5} = (m+2)^{\frac{5}{3}}](https://tex.z-dn.net/?f=%28%5Csqrt%5B3%5D%7B%28m%2B2%29%7D%29%5E%7B5%7D%20%3D%20%20%28m%2B2%29%5E%7B%5Cfrac%7B5%7D%7B3%7D%7D)
3. Root(5, m ^ 3) + 2
In this case,
n is 5
m is 3
x = m
![\sqrt[5]{(m)}^{3}+2 = m^{\frac{3}{5}}+2](https://tex.z-dn.net/?f=%5Csqrt%5B5%5D%7B%28m%29%7D%5E%7B3%7D%2B2%20%3D%20%20m%5E%7B%5Cfrac%7B3%7D%7B5%7D%7D%2B2)
4. Root(3, m ^ 5) + 2
In this case,
n is 3
m is 5
x = m
![\sqrt[3]{(m)}^{5}+2 = m^{\frac{5}{3}}+2](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B%28m%29%7D%5E%7B5%7D%2B2%20%3D%20%20m%5E%7B%5Cfrac%7B5%7D%7B3%7D%7D%2B2)