<span>3x - 2y + 2y > -14 + 2y </span>
<span>3x + 0 > -14 + 2y </span>
<span>3x > -14 + 2y </span>
<span>3x + 14 > -14 + 14 + 2y </span>
<span>3x + 14 > 0 + 2y </span>
<span>3x + 14 > 2y </span>
<span>(3x + 14)/2 > 2y/2 </span>
<span>(3x + 14)/2 > y*(2/2) </span>
<span>(3x + 14)/2 > y*(1) </span>
<span>(3x + 14)/2 > y </span>
<span>y < (3x + 14)/2 </span>
<span>y < 3x/2 + 14/2 </span>
<span>y < 3x/2 + 7 </span>
<span>y < (3/2)*x + 7 </span>
<span>“y” is LESS THAN (3/2)*x + 7 </span>
<span>the slope intercept form of the inequality is: y < (3/2)*x + 7 </span>
<span>STEP 2: Temporarily change the inequality into an equation by replacing the < symbol with an = symbol. </span>
<span>y < (3/2)*x + 7 </span>
<span>y = (3/2)*x + 7 </span>
<span>STEP 3: Prepare the x-y table using the equation from Step 2. </span>
<span>Using the slope intercept form of the equation from Step 2, choose a value for x, and then compute y for at least three points. </span>
<span>Although you could plot the graph with just two sets of x-y coordinates, you should compute at least three different sets of coordinates points to ensure you have not made a mistake. All three x-y coordinates must lie on the same straight line. If they do not, you have made a mistake. </span>
<span>You can choose any value for x. </span>
<span>For example, (arbitrarily) choose x = -2 </span>
<span>If x = -2, </span>
<span>y = (3/2)*x + 7 </span>
<span>y = (3/2)*(-2) + 7 </span>
<span>y = 4 </span>
4136/8= 517
The others
7116/8=889.5
4309/8=538.625
9406/8=1175.75
Subtract 9x from 23x yields 14x. This was done by subtracting algebraically the variables.
Parallel Lines: lines in a plane which do not meet. they do not intersect at any point, so your answer is B.
Answer:
A. 33x + 92y
Step-by-step explanation:
Set up the problem like this and combine like terms:
40x + 58y
- 7x + 34y
--------------------
33x + 92y
Or, set up the problem like this and combine like terms:
(40x + 58y) + (-7x + 34y)
40x + 58y - 7x + 34y
40x - 7x + 58y + 34y
33x + 92y
You should get the same answer with either method.