Answer:
B
Step-by-step explanation:
here we use trigonometric ratio involving soh,cah,toa
Answer:
I am confused what is the question?
Answer:
Step-by-step explain
Find the horizontal asymptote for f(x)=(3x^2-1)/(2x-1) :
A rational function will have a horizontal asymptote of y=0 if the degree of the numerator is less than the degree of the denominator. It will have a horizontal asymptote of y=a_n/b_n if the degree of the numerator is the same as the degree of the denominator (where a_n,b_n are the leading coefficients of the numerator and denominator respectively when both are in standard form.)
If a rational function has a numerator of greater degree than the denominator, there will be no horizontal asymptote. However, if the degrees are 1 apart, there will be an oblique (slant) asymptote.
For the given function, there is no horizontal asymptote.
We can find the slant asymptote by using long division:
(3x^2-1)/(2x-1)=(2x-1)(3/2x+3/4-(1/4)/(2x-1))
The slant asymptote is y=3/2x+3/4
Answer:
Solution: x = 2, y = -1 or (2, -1)
Step-by-step explanation:
Equation 1: 2x + y = 3
Equation 2: 5x - 2y = 12
Using the substitution method:
Transform the Equation 1 into its slope-intercept form:
2x + y = 3
2x - 2x + y = -2x + 3
y = 2x + 3
Substitute the value of y = -2x + 3 into Equation 2:
5x - 2y = 12
5x - 2(-2x + 3) = 12
5x + 4x - 6 = 12
9x - 6 = 12
9x - 6 + 6 = 12 + 6
9x = 18
9x/9 = 18/9
x = 2
Substitute the value of x = 2 into Equation 2 to solve for y:
5x - 2y = 12
5(2) - 2y = 12
10 - 2y = 12
10 - 10 - 2y = 12 - 10
-2y = 2
-2y/-2 = 2/-2
y = -1
Double-check whether the values for x and y will provide a true statement for both equations:
Equation 1: 2x + y = 3
2(2) + (-1) = 3
4 - 1 = 3
3 = 3 (True statement)
Equation 2: 5x - 2y = 12
5(2) - 2(-1) = 12
10 + 2 = 12
12 = 12 (True statement)
Therefore, the correct answers are: x = 2; y = -1 or (2, -1).
Answer:
AAAAAAA
Step-by-step explanation:
did it on edge