Answer: Infinite
Step-by-step explanation:
We know that in a triangle the sum of all the interior angles must be 180°.
The given angles 50º, 90º and 40º
The sum of the angles 50º+ 90º + 40º= 180°
Thus, a triangle is possible with the given measurement.,
Let there is another triangle with the given angles, then by AAA similarity criteria they are similar.
Similarly, all the triangles with the same measurements of the angles must be similar.
Therefore, there are infinite number of triangles can be possible with angles measuring 50º, 90º, and 40º.
Answer:
1.) 2.06
2.) 0.43
3.) 0.52
4.) 5.06
5.) 0.51
6.) 4.2
7.) 2.02
8.) 0.7
9.) 0.6
10.) 3.05
11.) 1.3
12.) 0.2
13.) 0.5
14.) 0.4
15.) 0.02
16.) 0.07
17.) 6.01
18.) 3.2
19.) 0.53
20.) 1.2
Step-by-step explanation:
Simple addition with decimals. If you have a whole number like 5, with a decimal like 0.07, 5+0.07 would be 5.07. 5 would take the spot of 0 in the ones place and .07 would remain. If you have 0.10+0.8, it would be 0.9 as your answer since we make 0.8 to 0.80 or 0.10 to 0.1 and add the two together. Hope this helped!
It would be 7.54 because you fist have to put the numbers ordered smallest to biggest amount 7.15, 7.44, 7.48,7.60, 7.72, 7.73 so the numbers that are in the middle are 7.48 and 7.60 you add them up, and the result you divide by 2 which gives you 7.54.
<span>3x - 2y + 2y > -14 + 2y </span>
<span>3x + 0 > -14 + 2y </span>
<span>3x > -14 + 2y </span>
<span>3x + 14 > -14 + 14 + 2y </span>
<span>3x + 14 > 0 + 2y </span>
<span>3x + 14 > 2y </span>
<span>(3x + 14)/2 > 2y/2 </span>
<span>(3x + 14)/2 > y*(2/2) </span>
<span>(3x + 14)/2 > y*(1) </span>
<span>(3x + 14)/2 > y </span>
<span>y < (3x + 14)/2 </span>
<span>y < 3x/2 + 14/2 </span>
<span>y < 3x/2 + 7 </span>
<span>y < (3/2)*x + 7 </span>
<span>“y” is LESS THAN (3/2)*x + 7 </span>
<span>the slope intercept form of the inequality is: y < (3/2)*x + 7 </span>
<span>STEP 2: Temporarily change the inequality into an equation by replacing the < symbol with an = symbol. </span>
<span>y < (3/2)*x + 7 </span>
<span>y = (3/2)*x + 7 </span>
<span>STEP 3: Prepare the x-y table using the equation from Step 2. </span>
<span>Using the slope intercept form of the equation from Step 2, choose a value for x, and then compute y for at least three points. </span>
<span>Although you could plot the graph with just two sets of x-y coordinates, you should compute at least three different sets of coordinates points to ensure you have not made a mistake. All three x-y coordinates must lie on the same straight line. If they do not, you have made a mistake. </span>
<span>You can choose any value for x. </span>
<span>For example, (arbitrarily) choose x = -2 </span>
<span>If x = -2, </span>
<span>y = (3/2)*x + 7 </span>
<span>y = (3/2)*(-2) + 7 </span>
<span>y = 4 </span>