Answer:
<h3>The answer is 24.2 kgm/s</h3>
Explanation:
The momentum of an object can be found by using the formula
<h3>momentum = mass × velocity</h3>
From the question
mass = 11 kg
velocity = 2.2 m/s
We have
momentum = 11 × 2.2
We have the final answer as
<h3>24.2 kgm/s</h3>
Hope this helps you
Answer:
v = 30.39 m/s
Explanation:
given,
mass of glider,M = 680 Kg
mass of the skydiver, m = 68 Kg
horizontal velocity,V = 30 m/s
when skydiver releases, velocity,v = 30 m/s
velocity if the glider,v' = ?
use the conservation of momentum
M V = m' v' + m v
m' = 680-68 = 612 Kg
680 x 30 = 612 x v + 60 x 30
612 v = 18600
v = 30.39 m/s
since the skydiver's speed will be the same as before release
The glider should continue to travel at 30.39 m/s since there are no external forces acting on it
Answer:
The pressure at the top of the step is 129.303 kilopascals.
Explanation:
From Hydrostatics we find that the pressure difference between extremes of the water column is defined by the following formula, which is a particular case of the Bernoulli's Principle (
):
(1)
,
- Total pressures at the bottom and at the top, measured in pascals.
- Density of the water, measured in kilograms per cubic meter.
- Height difference of the step, measured in meters.
If we know that
,
,
and
, then the pressure at the top of the step is:




The pressure at the top of the step is 129.303 kilopascals.