Answer:
The ball has an acceleration of -380 m/s², this means the ball slows down
An acceleration of -380 m/s² is the equivalent of 38.736 g's
Explanation:
Step 1: Data given
Velocity of the baseball at time t=0 = 38 m/s
At time t, the ball stops. This means v = 0
time before stops = 0.1s
Step 2: Calculate the acceleration
v= v0+at
with v= the velocity of the ball at time t = 0. v= 0
with v0 = the velocity of the ball at time t=0. v0 = 38 m/s
with a= the acceleration in m/s²
with t = time in seconds
0 = 38 + a*0.1
a = -380 m/s²
The ball has an acceleration of -380 m/s², this means the ball slows down
An acceleration of -380 m/s² is the equivalent of 38.736 g's
Answer:
The smallest radius will be four (4) times the initial radius
Explanation:
The car maintains a constant angular speed. According to Newton's Second Law F = m a
1. 
2. 
Replacing 2 in 1
3. 
Where:
Fr= Frictional force
Rp= Initial Radius
An= Centripetal Acceleration
M= Mass
V= Velocity
Also we have that:
4. 
μ= Coefficient of friction between the car and the surface
M= Mass
W= Weight
G= Gravity
r is cleared from equation 3
5. 
Replacing 4 in 5
6. 
Simplifying
7. 
Now we have a new velocity equal to twice the initial velocity, We replace it by 2v in equation 7
8. 
Computing
9. 
Replacing 5 in 9

Answer:
The moon revolves around Earth because Earth is larger than the moon, so it is heavier, and has a greater gravitational pull. The plane of the moon's orbit is very close to the plane of Earth's orbit around the Sun. This is why planets revolve around the Sun, because it is larger, so therefore it has a greater gravitational pull.
Answer:
V1 = 2221.33 L
Explanation:
The system is about a ideal gas. Then you can use the equation for ideal gases for a volume V1, temperature T1 and pressure P1:
(1)
And also for the situation in which the variables T, V and P has changed:
(1)
R: constant of ideal gases = 0.082 L.atm/mol.K
For both cases (1) and (2) the number of moles are the same. Next, you solve for n in (1) and (2):

Next, you equal these equations an solve for T2:

Finally you replace the values of P2, V2, T1 and T2:

Hence, the initial volume of the gas is 2221.33 L
Advantages of copper cables are that copper is an extremely powerful conductor of electricity and much more stable over time. It can withstand higher temperatures than aluminum and is more resistant to damage.
Disadvantages: Copper is more expensive and heavier and thus requires structural support.
Advantages of aluminum cables are that it is less expensive, easier to work with and light weight and so does not need structural support when strung over long distance.
Disadvantages: Aluminum is more susceptible to corrosion and requires periodic replacement. It needs much greater maintenance.
Advantages of steel cables are that steel does not rust, is fairly cheap and readily available. It has a higher tensile strength too.
Disadvantages: Steel cables are less ductile and are therefore more susceptible to fatigue.