Answer:
a) is correct.......,.....
F = ma = (kg)(m/s2) = kg ´ m/s2 N
hope this helps :D
Answer:
The correct option is;
X, W, Y, Z
Explanation:
The parameters given are;
Spring (S), Spring Constant (N/m)
W, 24
X, 35
Y, 22
Z, 15
The equation for elastic potential energy,
, is 
The above equation can also be written as 
Where:
k = The spring constant in (N/m)
x = The spring extension
Therefore, since the elastic potential energy,
, of the spring is directly proportional to the spring constant, k, we have the springs with higher spring constant will have higher elastic potential energy,
, therefore the correct order is as follows;
X > W > Y > Z
Answer:
6.68 X 10^-11
Explanation:
From the second Ka, you can calculate pKa = -log (Ka2) = 6.187
The pH at the second equivalence point (8.181) will be the average of pKa2 and pKa3. So,
8.181 = (6.187 + pKa3) / 2
Solving gives pKa3 = 10.175, and Ka3 = 10^-pKa3 = 6.68 X 10^-11