The greenhouse effect is a natural process that warms the Earth’s surface. When the Sun’s energy reaches the Earth’s atmosphere, some of it is reflected back to space and the rest is absorbed and re-radiated by greenhouse gases.
Greenhouse gases include water vapour, carbon dioxide, methane, nitrous oxide, ozone and some artificial chemicals such as chlorofluorocarbons (CFCs).
The absorbed energy warms the atmosphere and the surface of the Earth. This process maintains the Earth’s temperature at around 33 degrees Celsius warmer than it would otherwise be, allowing life on Earth to exist.
hope it helps you
follow for more………………………>_<
Answer:
a. 50ml b.10ml c. 6.097ml d. 190.1 ml
Explanation:
According to Boyle's law
Volume is inversely proportional to pressure at constant temerature
Mathematically
P1V1=P2V2
P1=Initial pressure=0.8atm
V1=Initial volume=25ml
making V2 the subject
at 0.4atm P2=0.4 atm,
V2=25×0.8/0.4
=50ml
at 2 atm V2=25×0.8/2
=10 ml
1mmHg=0.00131579
2500mmHg=3.28 atm
At 3.28 atm,V2=25×0.8/3.28
=6.097 ml
at 80.0 torr
1 torr=0.00131579
80 torr=0.1052 atm
at 0.1048 atm V2=25×0.8/0.1048
=190.1 ml
<u>Answer: </u>The correct answer is Silver.
<u>Explanation:</u>
Specific heat of fusion is defined as the amount of heat which is required to raise the temperature of 1 gram of a substance to 1°C. It is generally expressed in kJ/mol
We are required to find the substance which require more heat. For that we need to know the specific heat of all the substances.
The substance which have the highest specific heat, will require more heat.
The specific heat of the given substances are:
Silver = 11.3 kJ/mol
Sulfur = 1.7175 kJ/mol
Water = 5.98 kJ/mol
Lead = 4.799 kJ/mol
The specific heat of silver is the highest and hence, will require more heat.
Hence, the correct answer is silver.
Answer:

Explanation:
Hello,
For the given chemical reaction:

We first must identify the limiting reactant by computing the reacting moles of Al2S3:

Next, we compute the moles of Al2S3 that are consumed by 2.50 of H2O via the 1:6 mole ratio between them:

Thus, we notice that there are more available Al2S3 than consumed, for that reason it is in excess and water is the limiting, therefore, we can compute the theoretical yield of Al(OH)3 via the 2:1 molar ratio between it and Al2S3 with the limiting amount:

Finally, we compute the percent yield with the obtained 2.10 g:

Best regards.