The formula for the self ionization of water is 2H₂O(l)⇄H₃O⁺(aq)+OH⁻(aq)
The hydronium (H₃O⁺) is usually just referred to as a hydrogen ion or a proton (H⁺) and hydroxide (OH⁻) doesn't have another name that I am aware of. These ions do stay in solution. However the concentrations are really small and the equilibrium constant (K(w)) is 1×10⁻¹⁴.
I hope this helps. Let me know if anything is unclear.
Answer:
Sucrose: glucose and fructose
Explanation:
<em>What monosaccharides will result from the hydrolysis of sucrose?</em>
<em>Sucrose</em> is a <em>disaccharide</em> composed of 2 different <em>monosaccharides</em>: glucose and fructose joining by a 1 ⇒ 2 bond. These monosaccharides will be released upon the hydrolysis of sucrose.
<em>What monosaccharide will result from the hydrolysis of starch?</em>
<em>Starch</em> is a <em>polysaccharide</em> composed of numerous glucose monomers joined by glycosidic bonds (1 ⇒ 4 and 1 ⇒ 6). These monosaccharides will be released upon the hydrolysis of starch.
<span>11.3 kPa
The ideal gas law is
PV = nRT
where
P = Pressure
V = Volume
n = number of moles
R = Ideal gas constant (8.3144598 L*kPa/(K*mol) )
T = Absolute temperature
We have everything except moles and volume. But we can calculate moles by starting with the atomic weight of argon and neon.
Atomic weight argon = 39.948
Atomic weight neon = 20.1797
Moles Ar = 1.00 g / 39.948 g/mol = 0.025032542 mol
Moles Ne = 0.500 g / 20.1797 g/mol = 0.024777375 mol
Total moles gas particles = 0.025032542 mol + 0.024777375 mol = 0.049809918 mol
Now take the ideal gas equation and solve for P, then substitute known values and solve.
PV = nRT
P = nRT/V
P = 0.049809918 mol * 8.3144598 L*kPa/(K*mol) * 275 K/5.00 L
P = 113.8892033 L*kPa / 5.00 L
P = 22.77784066 kPa
Now let's determine the percent of pressure provided by neon by calculating the percentage of neon atoms. Divide the number of moles of neon by the total number of moles.
0.024777375 mol / 0.049809918 mol = 0.497438592
Now multiply by the pressure
0.497438592 * 22.77784066 kPa = 11.33057699 kPa
Round the result to 3 significant figures, giving 11.3 kPa</span>
1) The forward reaction is N2 (g) + O2 (g) → 2NO
(that reaction requires special contitions because at normal pressures and temperatures N2 and O2 do not react to form another compound.
2) The equiblibrium equation is
N2 (g) + O2 (g) ⇄ 2NO
3) Then, the reverse reaction is
2NO → N2(g) + O2(g)
Answer: 2NO → N2(g) + O2(g)
Answer:
False
That is a chemical change