Traditionally they include boron from group 3A, silicon and germanium in group 4A, aresnic and antimony in group 5A and tellurium from group 6A, although sometimes selenium, astatine, polonium and even bismuth have also been considered as metalloids. Typically metalloids are brittle and show a semi-metallic luster.
The six commonly recognised metalloids are boron, silicon, germanium, arsenic, antimony, and tellurium. Five elements are less frequently so classified: carbon, aluminium, selenium, polonium, and astatine.
Answer:
yes
Explanation:
How many grams of KCl will dissolve in 1 liter of H2O at 50 °C? 5. 58.0 g of K2Cr2O7 is added to 100 g H2O at. 0 °C. With constant stirring, to what temp-.
Answer:
The correct answer is: X is nitrogen dioxide, and Y is a metal oxide
Explanation:
Combustion of compound of containing nitrogen and metal will give nitrogen dioxide and metal oxide as product. During combustion reaction a compound reacts with oxygen in order to yield oxides of elements present in the compound.
The general equation is given as:

Hence, the correct answer is :X is nitrogen dioxide, and Y is a metal oxide.
The ribosomes are the ones delivering the products of the endoplasmic reticulum
Answer:
310.53 g of Cu.
Explanation:
The balanced equation for the reaction is given below:
CuSO₄ + Zn —> ZnSO₄ + Cu
Next, we shall determine the mass of CuSO₄ that reacted and the mass Cu produced from the balanced equation. This can be obtained as follow:
Molar mass of CuSO₄ = 63.5 + 32 + (16×4)
= 63.5 + 32 + 64
= 159.5 g/mol
Mass of CuSO₄ from the balanced equation = 1 × 159.5 = 159.5 g
Molar mass of Cu = 63.5 g/mol
Mass of Cu from the balanced equation = 1 × 63.5 = 63.5 g
Summary:
From the balanced equation above,
159.5 g of CuSO₄ reacted to produce 63.5 g of Cu.
Finally, we shall determine the mass of Cu produced by the reaction of 780 g of CuSO₄. This can be obtained as follow:
From the balanced equation above,
159.5 g of CuSO₄ reacted to produce 63.5 g of Cu.
Therefore, 780 g of CuSO₄ will react to produce = (780 × 63.5)/159.5 = 310.53 g of Cu.
Thus, 310.53 g of Cu were obtained from the reaction.