Answer:
1.) Domain: [-2, 1] Range: [1, 2] 2.) Domain: [-1, 2] Range: [-2, 2]
Step-by-step explanation:
Let the side of the garden alone (without walkway) be x.
Then the area of the garden alone is x^2.
The walkway is made up as follows:
1) four rectangles of width 2 feet and length x, and
2) four squares, each of area 2^2 square feet.
The total walkway area is thus x^2 + 4(2^2) + 4(x*2).
We want to find the dimensions of the garden. To do this, we need to find the value of x.
Let's sum up the garden dimensions and the walkway dimensions:
x^2 + 4(2^2) + 4(x*2) = 196 sq ft
x^2 + 16 + 8x = 196 sq ft
x^2 + 8x - 180 = 0
(x-10(x+18) = 0
x=10 or x=-18. We must discard x=-18, since the side length can't be negative. We are left with x = 10 feet.
The garden dimensions are (10 feet)^2, or 100 square feet.
For this case we will complete the table part by part.
We have then:
First row:
Snake = Rabbit = 4
Rabbit = Not Snake = 18
Total = 4 + 18 = 22
Second row:
Not rabbit = Snake = 11
Not rabbit = Not Snake = 26
Total = 11 + 26 = 37
Third row:
Total = 4 + 11 = 15
Total = 18 + 26 = 44
Total = 59
Nine billion, nine hundred thousand, nine.
Given the equation:

(a) You can identify that the student applied the Subtraction Property of Equality by subtraction 3 from both sides of the equation:

However, the student made a mistake when adding the numbers on the right side.
Since you have two numbers with the same sign on the right side of the equation, you must add them, not subtract them and use the same sign in the result. Then, the steps to add them are:
- Add their Absolute values (their values without the negative sign).
- Write the sum with the negative sign.
Then:

(b) The correct procedure is:
1. Apply the Subtraction Property of Equality by subtracting 3 from both sides (as you did in the previous part):

2. Apply the Multiplication Property of Equality by multiplying both sides of the equation by 6:

Hence, the answers are:
(a) The student made a mistake by adding the numbers -18 and -3:

(b) The value of "x" should be: