Answer:
Option (D) On average, the molecules of gas 1 lose some of their kinetic energy to the molecules of gas 2 through collisions, resulting in the two gases eventually having the same temperature.
Explanation:
From the question given, Gas 1 was initially at a higher temperature than Gas 2.
As the two gas mixes together, there will be a transfer of heat from Gas 1 molecules to Gas 2 molecules. Now, as this continues over a period of time, the two gas will eventually have the same temperature.
Answer:
Explanation:
a )
from lens makers formula

f is focal length , r₁ is radius of curvature of one face and r₂ is radius of curvature of second face
putting the values

1.462 = 2 - 1 / r₂
1 / r₂ = .538
r₂ = 1.86 cm .
= 18.6 mm .
b )
object distance u = 25 cm
focal length of convex lens f = 1.8 cm
image distance v = ?
lens formula



.5555 - .04
= .515
v = 1.94 cm
c )
magnification = v / u
= 1.94 / 25
= .0776
size of image = .0776 x size of object
= .0776 x 10 mm
= .776 mm
It will be a real image and it will be inverted.
Answer:
UV light is more powerful as it has greater energy.
Explanation:
The energy propagated by electromagnetic waves ( light ) through vacuum or medium is known as electromagnetic radiation.
The frequency/wavelength range of electromagnetic radiation is known as electromagnetic spectrum. The electromagnetic spectrum ranging from gamma ray to radio waves.
Frequency range of UV light = ( 8 x 10¹⁴ to 3 x 10¹⁶ ) Hz
Frequency range of Microwaves = ( 300 x 10⁶ to 300 x 10⁹ ) Hz
Ratio of UV light to Microwaves = (
to
)
= ( 2.66 x 10⁶ to 1 x 10⁸ )
Energy of electromagnetic radiation is given by the relation:
E = hν
Here h is plank's constant and ν is frequency.
UV light is more powerful than Microwaves as frequency of UV light is greater than frequency of microwaves. Thus, by the above equation, the energy of UV light is more than energy of Microwaves.
( 1.05 x 10¹⁵ km ) x ( 1 LY / 9.5 x 10¹² km ) x ( 1 psc / 3.262 LY ) =
(1.05) / (9.5 x 3.262) x (km · LY · psc) / (km · LY) x (10¹⁵⁻¹²) =
(0.03388) x (psc) x (10³) =
33.88 parsecs
Answer:
4.29 millimeters
Explanation:
Bats emit ultrasound waves: in air, ultrasound waves travel at a speed of

The frequency of the waves emitted by this bat is:

Therefore we can find the wavelength of the wave emitted by the bat by using the relationship between speed, frequency and wavelength:
