Answer:
your answer should be 102kg i could be wrong.
Answer:
Given
if p:q=2/3:3 and p:r=3/4:1/2, calculate the ratio p:q:r giving your answer in its simplest form
We need to find the ratio p:q:r
Given p:q = 2/3 : 3 = 2/3 / 3 = 2/9
and p : r = 3/4 : 1/2 = 3/4 / 1/2 = 3/2
Now p/q = 2/9 and p/r = 3/2
We need to make p equal numerators so we get
p/q = 2/9 x 3/3 = 6/27 and
p/r = 2/3 x 3/2 = 6/4
Therefore p : q : r = 6 : 27 : 4
Answer:
Width = 2x²
Length = 7x² + 3
Step-by-step explanation:
∵ The area of a rectangle is 
∵ Its width is the greatest common monomial factor of
and 6x²
- Let us find the greatest common factor of 14 , 6 and
, x²
∵ The factors of 14 are 1, 2, 7, 14
∵ The factors of 6 are 1, 2, 3, 6
∵ The common factors of 14 and 6 are 1, 2
∵ The greatest one is 2
∴ The greatest common factor of 14 and 6 is 2
- The greatest common factor of monomials is the variable with
the smallest power
∴ The greatest common factor of
and x² is x²
∴ The greatest common monomial factor of
and 6x² is 2x²
∴ The width of the rectangle is 2x²
To find the length divide the area by the width
∵ The area = 
∵ The width = 2x²
∴ The length = (
) ÷ (2x²)
∵
÷ 2x² = 7x²
∵ 6x² ÷ 2x² = 3
∴ (
) ÷ (2x²) = 7x² + 3
∴ The length of the rectangle is 7x² + 3
Answer:

Step-by-step explanation:
Given the rational expression:
, to express this in simplified form, we would need to apply the concept of partial fraction.
Step 1: factorise the denominator





Thus, we now have: 
Step 2: Apply the concept of Partial Fraction
Let,
= 
Multiply both sides by (x - 1)(x - 4)
= 

Step 3:
Substituting x = 4 in 





Substituting x = 1 in 





Step 4: Plug in the values of A and B into the original equation in step 2

