First find the area of the parallelogram
Area of parallelogram = b x h
= 12 x 7
= 84
Then find area of kite
Area of kite = (xy)/2
= (7 x 12)/2
= 84/2
= 42
Now we are gonna subtract the area of the kite from the area of the parallelogram.
84 - 42 = 42
Therefore the area of the shaded region is 42.
The area of the sidewalk is 72 square units. Solution: First, multiply 10 by 12 which equals 120. Then, subtract 6x8=48. So, therefore, 120-48= 72
6x+1 / 2x +6 - 5/2
Factor 2 out of the denominator of the first fraction:
6x+1 / 2(x+3) - 5/2
Rewrite 5/2 to have a common denominator with the first fraction:
6x+1/2(x+3) - 5(x+3) / 2(x+3)
Simplify terms:
6x +1 - 5(x+3) / 2(x+3)
Use distributive property:
6x +1 - 5x -15 / 2(x+3)
Combine like terms for final answer:
(x-14) / 2(x+3)
Answer:
y+6=2(x-3)
Step-by-step explanation:
y-y1=m(x-x1)
y-(-6)=2(x-3)
y+6=2(x-3)
Answer:
1. 
2. 
3. 
4. ![40^{\frac{2}{3}}=4\sqrt[3]{25} =4325](https://tex.z-dn.net/?f=40%5E%7B%5Cfrac%7B2%7D%7B3%7D%7D%3D4%5Csqrt%5B3%5D%7B25%7D%20%3D4325)
5. Step 4: 
6. 
Step-by-step explanation:
Use the following properties:
![a^{\frac{x}{y} } =\sqrt[x]{a^{y} }](https://tex.z-dn.net/?f=a%5E%7B%5Cfrac%7Bx%7D%7By%7D%20%7D%20%3D%5Csqrt%5Bx%5D%7Ba%5E%7By%7D%20%7D)
![\sqrt[n]{ab} =\sqrt[n]{a} \sqrt[n]{b}](https://tex.z-dn.net/?f=%5Csqrt%5Bn%5D%7Bab%7D%20%3D%5Csqrt%5Bn%5D%7Ba%7D%20%5Csqrt%5Bn%5D%7Bb%7D)




So:
1. ![27^{\frac{2}{3} } =\sqrt[3]{27^{2}} =\sqrt[3]{729} }=9](https://tex.z-dn.net/?f=27%5E%7B%5Cfrac%7B2%7D%7B3%7D%20%7D%20%3D%5Csqrt%5B3%5D%7B27%5E%7B2%7D%7D%20%3D%5Csqrt%5B3%5D%7B729%7D%20%7D%3D9)
2. 
3. ![(-243)^{\frac{3}{5} } =\sqrt[5]{-243^{3} } =\sqrt[5]{-14348907} =-27](https://tex.z-dn.net/?f=%28-243%29%5E%7B%5Cfrac%7B3%7D%7B5%7D%20%7D%20%3D%5Csqrt%5B5%5D%7B-243%5E%7B3%7D%20%7D%20%3D%5Csqrt%5B5%5D%7B-14348907%7D%20%3D-27)
4. ![40^{\frac{2}{3}}=\sqrt[3]{40^{2} } =\sqrt[3]{2^{6} 5^{2} } =\sqrt[3]{2^{6} } \sqrt[3]{5^{2} } =2^{\frac{6}{3} } 5^{\frac{2}{3} } =4 *5^{\frac{2}{3} } =4\sqrt[3]{5^{2} } =4\sqrt[3]{25}=4325](https://tex.z-dn.net/?f=40%5E%7B%5Cfrac%7B2%7D%7B3%7D%7D%3D%5Csqrt%5B3%5D%7B40%5E%7B2%7D%20%7D%20%3D%5Csqrt%5B3%5D%7B2%5E%7B6%7D%205%5E%7B2%7D%20%7D%20%3D%5Csqrt%5B3%5D%7B2%5E%7B6%7D%20%7D%20%5Csqrt%5B3%5D%7B5%5E%7B2%7D%20%7D%20%3D2%5E%7B%5Cfrac%7B6%7D%7B3%7D%20%7D%205%5E%7B%5Cfrac%7B2%7D%7B3%7D%20%7D%20%3D4%20%2A5%5E%7B%5Cfrac%7B2%7D%7B3%7D%20%7D%20%3D4%5Csqrt%5B3%5D%7B5%5E%7B2%7D%20%7D%20%3D4%5Csqrt%5B3%5D%7B25%7D%3D4325)
5. 
6.
![(-8c^{9} d^{-3} )^{\frac{1}{3} } *(6c^{-1}d^{4})^{2} =\sqrt[3]{-8} c^{3} d^{-1} 36c^{-2} d^{8} \\\\-2c^{3} d^{-1} 36c^{-2} d^{8}=-72cd^{7}](https://tex.z-dn.net/?f=%28-8c%5E%7B9%7D%20d%5E%7B-3%7D%20%29%5E%7B%5Cfrac%7B1%7D%7B3%7D%20%7D%20%2A%286c%5E%7B-1%7Dd%5E%7B4%7D%29%5E%7B2%7D%20%3D%5Csqrt%5B3%5D%7B-8%7D%20c%5E%7B3%7D%20d%5E%7B-1%7D%2036c%5E%7B-2%7D%20d%5E%7B8%7D%20%5C%5C%5C%5C-2c%5E%7B3%7D%20d%5E%7B-1%7D%2036c%5E%7B-2%7D%20d%5E%7B8%7D%3D-72cd%5E%7B7%7D)