1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Marianna [84]
3 years ago
8

Anna Litical and Noah Formula are experimenting with the effect of mass and net force upon the acceleration of a lab cart. They

determine that a net force of F causes a cart with a mass of M to accelerate at 48 cm/s/s. What is the acceleration value of a cart with a mass of 2M when acted upon by a net force of 2F?
Physics
1 answer:
timama [110]3 years ago
6 0

Answer:

c. 48 cm/s/s

Explanation:

Anna Litical and Noah Formula are experimenting with the effect of mass and net force upon the acceleration of a lab cart. They determine that a net force of F causes a cart with a mass of M to accelerate at 48 cm/s/s. What is the acceleration value of a cart with a mass of 2M when acted upon by a net force of 2F?

from newtons second law of motion ,

which states that change in momentum is directly proportional to the force applied.

we can say that

f=m(v-u)/t

a=acceleration

t=time

v=final velocity

u=initial velocity

since a=(v-u)/t

f=m*a

force applied is F

m =mass of the object involved

a is the acceleration of the object involved

f=m*48.........................1

in the second case ;a mass of 2M when acted upon by a net force of 2F

f=ma

a=2F/2M

substituting equation 1

a=2(M*48)/2M

a=. 48 cm/s/s

You might be interested in
Consider a double-slit with a distance between the slits of 0.04 mm and slit width of 0.01 mm. Suppose the screen is a distance
scZoUnD [109]

Answer:

The distance between the places where the intensity is zero due to the double slit effect is 15 mm.

Explanation:

Given that,

Distance between the slits = 0.04 mm

Width = 0.01 mm

Distance between the slits and screen = 1 m

Wavelength = 600 nm

We need to calculate the distance between the places where the intensity is zero due to the double slit effect

For constructive fringe

First minima from center

x_{1}=\dfrac{\lambda D}{2d}

Second minima from center

x_{2}=\dfrac{3\lambda D}{2d}

The distance between the places where the intensity is zero due to the double slit effect

\Delta x_{d}=x_{2}-x_{1}

\Delta x_{d}=\dfrac{3\lambda D}{2d}-\dfrac{\lambda D}{2d}

\Delta x_{d}=\dfrac{\lambda D}{d}

Put the value into the formula

\Delta x_{d}=\dfrac{600\times10^{-9}\times1}{0.04\times10^{-3}}

\Delta x_{d}=0.015 =15\times10^{-3}\ m

\Delta x_{d}=15\ mm

Hence, The distance between the places where the intensity is zero due to the double slit effect is 15 mm.

8 0
3 years ago
Which factor has the greatest effect on the strength of an electromagnet?
irakobra [83]

B. The number of coils of wire around the core

6 0
2 years ago
Read 2 more answers
The bigclaw snapping shrimp shown in (Figure 1) is aptly named--it has one big claw that snaps shut with remarkable speed. The p
leva [86]

1) 1.86\cdot 10^6 rad/s^2

2) 2418 rad/s

3) 27000 m/s^2

4) 36.3 m/s

Explanation:

1)

The angular acceleration of an object in rotation is the rate of change of angular velocity.

It can be calculated using the following suvat equation for angular motion:

\theta=\omega_i t +\frac{1}{2}\alpha t^2

where:

\theta is the angular displacement

\omega_i is the initial angular velocity

t is the time

\alpha is the angular acceleration

In this problem we have:

\theta=90^{\circ} = \frac{\pi}{2}rad is the angular displacement

t = 1.3 ms = 0.0013 s is the time elapsed

\omega_i = 0 is the initial angular velocity

Solving for \alpha, we find:

\alpha = \frac{2(\theta-\omega_i t)}{t^2}=\frac{2(\pi/2)-0}{0.0013}=1.86\cdot 10^6 rad/s^2

2)

For an object in accelerated rotational motion, the final angular speed can be found by using another suvat equation:

\omega_f = \omega_i + \alpha t

where

\omega_i is the initial angular velocity

t is the time

\alpha is the angular acceleration

In this problem we have:

t = 1.3 ms = 0.0013 s is the time elapsed

\omega_i = 0 is the initial angular velocity

\alpha = 1.86\cdot 10^6 rad/s is the angular acceleration

Therefore, the final angular speed is:

\omega_f = 0 + (1.86\cdot 10^6)(0.0013)=2418 rad/s

3)

The tangential acceleration is related to the angular acceleration by the following formula:

a_t = \alpha r

where

a_t is the tangential acceleration

\alpha is the angular acceleration

r is the distance of the point from the centre of rotation

Here we want to find the tangential acceleration of the tip of the claw, so:

\alpha = 1.86\cdot 10^6 rad/s is the angular acceleration

r = 1.5 cm = 0.015 m is the distance of the tip of the claw from the axis of rotation

Substituting,

a_t=(1.86\cdot 10^6)(0.015)=27900 m/s^2

4)

Since the tip of the claw is moving by uniformly accelerated motion, we can find its final speed using the suvat equation:

v=u+at

where

u is the initial linear speed

a is the tangential acceleration

t is the time elapsed

Here we have:

a=27900 m/s^2 (tangential acceleration)

u = 0 m/s (it starts from rest)

t = 1.3 ms = 0.0013 s is the time elapsed

Substituting,

v=0+(27900)(0.0013)=36.3 m/s

5 0
3 years ago
A coating is being applied to reduce the reflectivity of a pane of glass to light with a wavelength of 522 nm incident near the
fredd [130]

Answer:

  t = 94.91 nm

Explanation:

given,

wavelength of the light = 522 nm

refractive index of the material  = 1.375

we know the equation

       c = ν λ

where ν is the frequency of the wave

           c is the speed of light

   \nu= \dfrac{c}{\nu\lambda}

   \nu = \dfrac{3\times 10^8}{522 \times 10^{-9}}

       ν = 5.75 x 10¹⁴ Hz

the thickness of the coating will be calculated using

        t = \dfrac{\lambda}{4\mu_{material}}

        t = \dfrac{522 \times 10^{-9}}{4\times 1.375}

              t = 94.91 nm

the thickness of the coating will be equal to t = 94.91 nm

7 0
3 years ago
Which of the following is not a galilean moon?
REY [17]
The answer is B) titan
7 0
3 years ago
Read 2 more answers
Other questions:
  • Which type of element has the following general properties: solid at room temperature, high luster, good conductor of heat and e
    13·1 answer
  • The weight of the block in the drawing is 97.0 N. The coefficient of static friction between the block and the vertical wall is
    15·1 answer
  • A series RLC circuit has a resistance of 57.61 W, a capacitance of 13.13 mF, and an inductance of 196.03 mH. The circuit is conn
    8·1 answer
  • By using kepler's 3rd law we find that ___________.
    13·2 answers
  • These three members of the Nile gas family have one property in common because they are gases at room temperature. That is they
    5·1 answer
  • Jupiter’s strength of gravity is greater than Earth’s strength of gravity. A person’s will be the same on Jupiter and Earth. A p
    14·2 answers
  • 14POINTS!!!!!!!!! AND BRAINLIEST ANSWER!!!!!!!!!!
    15·2 answers
  • 1. Explain the importance of doing muscular strength and muscular endurance activities.
    5·2 answers
  • Three charged particles are placed at each of three corners of an equilateral triangle whose sides are of length 3.3 cm . Two of
    7·1 answer
  • Givereasons for the following.
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!