Answer:
<em>I must travel with a speed of 2.97 x 10^8 m/s</em>
Explanation:
Sine the spacecraft flies at the same speed in the to and fro distance of the journey, then the time taken will be 6 months plus 6 months
Time that elapses on the spacecraft = 1 year
On earth the people have advanced 120 yrs
According to relativity, the time contraction on the spacecraft is gotten from
= 
where
is the time that elapses on the spacecraft = 120 years
= time here on Earth = 1 year
is the ratio v/c
where
v is the speed of the spacecraft = ?
c is the speed of light = 3 x 10^8 m/s
substituting values, we have
120 = 1/
squaring both sides of the equation, we have
14400 = 1/
14400 - 14400
= 1
14400 - 1 = 14400
14399 = 14400
= 14399/14400 = 0.99
= 0.99
substitute β = v/c
v/c = 0.99
but c = 3 x 10^8 m/s
v = 0.99c = 0.99 x 3 x 10^8 = <em>2.97 x 10^8 m/s</em>
Answer:
The frequency of the wave is 5 x 10⁹ Hz
Explanation:
Given;
wavelength of the radio wave, λ = 6.0 × 10⁻²m
radio wave is an example of electromagnetic wave, and electromagnetic waves travel with speed of light, which is equal to 3 x 10⁸ m/s².
Applying wave equation;
V = F λ
where;
V is the speed of the wave
F is the frequency of the wave
λ is the wavelength
Make F the subject of the formula
F = V / λ
F = (3 x 10⁸) / (6.0 × 10⁻²)
F = 5 x 10⁹ Hz
Therefore, the frequency of the wave is 5 x 10⁹ Hz
Answer:
Stationary
20N
Explanation:
From the graph, we see that the body traveling is on a fixed position. Therefore, it is a stationary body.
The graph given is a position - time curve.
This curve depict a body changing position with given time.
Since the line of the curve is on a single position, the body is not changing position with the passage of time therefore, it is a stationary object.
B. 20N
From Newton's third law of motion we understand that "action and reaction force are equal but oppositely directed".
Since the person is exerting a force of 20N on the balance.
So, the reaction force by the balance is 20N upward.
Answer:
A 30 lb weight is attached to the end of a spring. The spring is stretched 6 in. Find the equation of motion if the weight is released from rest a point 3 inches above equilibrium position 。x(,) =-2 sin(81) 32 x(t) =-32 cos(80 O x(r) =-icos(81)
Explanation: