Answer:
Explanation:
In the x direction the force will be
½(-w₀)L/2 = -¼w₀L
acting ⅔(L/2) = L/3 below the x axis.
In the y direction the force will be
½(-w₀)L + ½w₀L/2 = -¼w₀L
the magnitude of the resultant will be
F = w₀L √((-¼)² + (-¼)²) = w₀L√⅛
in the direction
θ = arctan(-¼w₀L / -¼w₀L) = 225°
to find the distance, we balance moments
(w₀L√⅛)[d] = ½(w₀)L[⅔L] + ¼w₀L[⅔L/2] - ¼w₀L[L - ⅓L/2]
(√⅛)[d] = ½ [⅔L] + ¼ [⅔L/2] - ¼ [L - ⅓L/2]
(√⅛)[d] = ½[⅔L] + ¼[⅔L/2] - ¼[L - ⅓L/2]
(√⅛)[d] = ⅓L + ⅟₁₂L - ¼L + ⅟₂₄L
(√⅛)[d] = 5L/24
d = 5L/24 / (√⅛)
d = 5√⅛L/3
Answer:
The x represents the reference point on a motion map
Explanation:
-Motion maps are another way to represent the motion of an object. (other representations are graphical and mathematical models)
Answer:
<h2>3000 N</h2>
Explanation:
The force acting on an object given it's mass and acceleration can be found by using the formula
force = mass × acceleration
From the question we have
force = 1000 × 3
We have the final answer as
<h3>3000 N</h3>
Hope this helps you
When you are talking about calculating the kinetic energy of an object, the formula is as stated:
Ek =1/2mv²
Where m is mass and v is velocity. Sub all those numbers in and you'll get 25J of kinetic energy.
Assuming the ball follows classical 2D projectile motion (moves in a parabola) and that the height y = the maximum height the ball goes in the y direction (because this would be its midpoint), then the velocity at height y is equal to the initial x component of velocity. At the midpoint, the y component is zero, so the velocity only depends on the x component. Projectiles move at constant speed in the x direction, so X = Xo. As long as you know actual values for Vi and either the initial angle or one initial component, then you can solve for Xo using trigonometry. Xo is thus the velocity of the ball once it has reached its maximum height.