1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
allochka39001 [22]
3 years ago
5

These three members of the Nile gas family have one property in common because they are gases at room temperature. That is they

Physics
1 answer:
eduard3 years ago
7 0
I believe you mean noble gases. The answer is Helium, Argon and Xenon. These are all gases under standard conditions.
You might be interested in
Unpolarized light with intensity 370 W/m2 passes first through a polarizing filter with its axis vertical, then through a second
vampirchik [111]

To solve this problem it is necessary to apply the concepts given by Malus regarding the Intensity of light.

From the law of Malus intensity can be defined as

I' = \frac{I_0}{2} cos^2 \theta

Where

\theta =Angle From vertical of the axis of the polarizing filter

I_0 = Intensity of the unpolarized light

The expression for the intensity of the light after passing through the first filter is given by

I = \frac{I_0}{2}

Replacing we have that

I = \frac{370}{2}

I = 185W/m^2

Re-arrange the equation,

I'= \frac{I_0}{2}cos^2\theta

Re-arrange to find \theta

cos^2\theta = \frac{2I'}{I_0}

cos^2\theta = \frac{2*138}{370}

\theta = cos^{-1}(\sqrt{\frac{2*138}{370}})

\theta = 0.5282rad

\theta = 30.27\°

The value of the angle from vertical of the axis of the second polarizing filter is equal to 30.2°

4 0
3 years ago
A block of wood is floating in water; it is depressed slightly and then released to oscillate up and down. Assume that the top a
Marysya12 [62]

Explanation:

Equilibrium position in y direction:

W = Fb (Weight of the block is equal to buoyant force)

m*g = V*p*g

V under water = A*h

hence,

m = A*h*p

Using Newton 2nd Law

-m*\frac{d^2y}{dt^2} = Fb - W\\\\-m*\frac{d^2y}{dt^2} = p*g*(h+y)*A - A*h*p*g\\\\-A*h*p*\frac{d^2y}{dt^2} = y *p*A*g\\\\\frac{d^2y}{dt^2} + \frac{g}{h} * y =0

Hence, T time period

T = 2*pi*sqrt ( h / g )

4 0
3 years ago
A rectangular sharp-crested weir is contracted on both sides, and the opening is 1.2 m wide. At what height (Hw) should it be pl
Alex

Answer:

H_w = 2.129 m

Explanation:

given,

Width of the weir, B = 1.2 m

Depth of the upstream weir, y = 2.5 m

Discharge, Q = 0.5 m³/s

Weir coefficient, C_w = 1.84 m

Now, calculating the water head over the weir

Q = C_w BH^{3/2}

H = (\dfrac{Q}{C_wB})^{2/3}

H = (\dfrac{0.5}{1.84\times 1.2})^{2/3}

H = 0.371\ m

now, level of weir on the channel

H_w = y - H

H_w = 2.5 - 0.371

H_w = 2.129 m

Height at which weir should place is equal to 2.129 m.

7 0
3 years ago
Use the diagram below to answer the following question:
d1i1m1o1n [39]

Answer:

3.0 cm

Explanation:

We can solve this problem by using the mirror equation:

\frac{1}{f}=\frac{1}{p}+\frac{1}{q}

where

f is the focal length of the mirror

p is the distance of the object from the mirror

q is the distance of the image from the mirror

In this problem we have:

f = 1.5 cm is the focal length of the mirror (positive for a concave mirror)

p = 3.0 cm is the distance of the object from the mirror

Therefore, the distance of the image is:

\frac{1}{q}=\frac{1}{f}-\frac{1}{p}=\frac{1}{1.5}-\frac{1}{3.0}=\frac{1}{3.0}\\\rightarrow q=3.0 cm

And the positive sign means that the image is real.

(The second part of the exercise is just the description of the image of the first exercise).

5 0
2 years ago
A boy flies a kite with the string at a 30 degree angle to the horizontal. The tension in the string is 4.5N .
sp2606 [1]
How much work in J does the string do on the boy if the boy stands still? 

<span>answer: None. The equation for work is W = force x distance. Since the boy isn't moving, the distance is zero. Anything times zero is zero </span>
<span>--------------------------------------... </span>
<span>How much work does the string do on the boy if the boy walks a horizontal distance of 11m away from the kite? </span>

<span>answer: might be a trick question since his direction away from the kite and his velocity weren't noted. Perhaps he just set the string down and walked away 11m from the kite. If he did this, it is the same as the first one...no work was done by the sting on the boy. </span>

<span>If he did walk backwards with no velocity indicated, and held the string and it stayed at 30 deg the answer would be: </span>
<span>4.5N + (boys negative acceleration * mass) = total force1 </span>
<span>work = total force1 x 11 meters </span>
<span>--------------------------------------... </span>

<span>How much work does the string do on the boy if the boy walks a horizontal distance of 11m toward the kite? </span>

<span>answer: same as above only reversed: </span>
<span>4.5N - (boys negative acceleration * mass) = total force2 </span>
<span>work = total force2 x 11 meters</span>
6 0
3 years ago
Other questions:
  • How long is the image of a metrestick formed by a plane mirror?
    7·1 answer
  • What are the four elements that Aristotle included in his model of matter
    13·1 answer
  • Reflections from a thin layer of air between two glass plates cause constructive interference for a particular wavelength of lig
    13·1 answer
  • A cube and a square pyramid were joined to form the composite solid. A cube with side lengths of 12 inches. A square pyramid wit
    7·2 answers
  • The magnetic field strength within a long solenoid isb=4.0t t, where t is time in seconds. if the radius of thesolenoid is1.0 cm
    8·1 answer
  • An object has an acceleration of 12.0 m/s/s. The mass of the object is doubled while the net force on the object is held constan
    7·1 answer
  • Calcular la densidad de un trozo de hierro cuya masa es 110 g<br>y ocupa un volumen de 13.99 cm?.​
    14·1 answer
  • Can you go on glowing coals and if so why ? <br> Please help meee
    9·1 answer
  • if a car is accelerating downhill under a net force of 3674 N, what additional force would cause the car to have a constant velo
    10·1 answer
  • <img src="https://tex.z-dn.net/?f=%5Chuge%5Cmathfrak%7BQuestion%3A-%7D" id="TexFormula1" title="\huge\mathfrak{Question:-}" alt=
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!