Answer:
a) 0.778
b) 0.9222
c) 0.6826
d) 0.3174
e) 2 drivers
Step-by-step explanation:
Given:
Sample size, n = 5
P = 40% = 0.4
a) Probability that none of the drivers shows evidence of intoxication.



b) Probability that at least one of the drivers shows evidence of intoxication would be:
P(X ≥ 1) = 1 - P(X < 1)
c) The probability that at most two of the drivers show evidence of intoxication.
P(x≤2) = P(X = 0) + P(X = 1) + P(X = 2)
d) Probability that more than two of the drivers show evidence of intoxication.
P(x>2) = 1 - P(X ≤ 2)
e) Expected number of intoxicated drivers.
To find this, use:
Sample size multiplied by sample proportion
n * p
= 5 * 0.40
= 2
Expected number of intoxicated drivers would be 2
The answer is: 0.24 x 100 = 24%
The answer is definitely 2.4>3x
Y=mx+b
m=slope
b=yint
slope=5/6
ying=-3
equation is y=5/6x-3
Answer:
CD||GH is "equal" ABD is "Right angle" and ABD||GEF is "Approximately equal"