Answer:
1/8
Step-by-step explanation:
sin²(π/8) − cos⁴(3π/8)
Use power reduction formulas:
1/2 (1 − cos(2×π/8)) − 1/8 (3 + 4 cos(2×3π/8) + cos(4×3π/8))
Simplify:
1/2 (1 − cos(π/4)) − 1/8 (3 + 4 cos(3π/4) + cos(3π/2))
1/2 (1 − √2/2) − 1/8 (3 + 4 (-√2/2) + 0)
1/2 − √2/4 − 1/8 (3 − 2√2)
1/2 − √2/4 − 3/8 +√2/4
1/2 − 3/8
1/8
Answer:
see the explanation
Step-by-step explanation:
we have

Find the inverse of A(x)
Let
y=A(x)

Exchange the variables x for y and y for x

Isolate the variable y


Let

------> function inverse of A(x)
<em>Explanation</em>
For x=1
Find the value of A(x)

The point (1,7) is a solution for A(x)
That means-----> The point (7,1) is a solution for the function inverse g(x)
Verify
For x=7
The point (7,1) is a solution for g(x)
therefore
A(x) and g(x) are inverses of each other if the point (x,y) is a solution of A(x) and the point (y,x) is a solution of g(x)
Answer:
19x+8
Step-by-step explanation:
1) distribute the term outside the parenthesis to each term inside:
4*3x=12x
4*2=8
12x+8-7x
2) 12x+7x=19x
19x+8
Hope this helps!
Question 1: <span>
The answer is D. which it ended up being <span>
0.9979</span>
Question 2: </span>
The expression P(z > -0.87) represents the area under the standard normal curve above a given value of z. What is P(z > -0.87)? Express your answer as a decimal to the nearest ten thousandThe expression P(z > -0.87) represents the area under the standard normal curve above a given value of z. What is P(z > -0.87)? Express your answer as a decimal to the nearest ten thousandth (four decimal places). So being that rounding it off would mean your answer would be = ?
Question 3: <span>
Assume that the test scores from a college admissions test are normally distributed, with a mean of 450 and a standard deviation of 100. a. What percentage of the people taking the test score between 400 and 500?b. Suppose someone receives a score of 630. What percentage of the people taking the test score better? What percentage score worse?c. A university will not admit a student who does not score in the upper 25% of those taking the test regardless of other criteria. What score is necessary to be considered for admission? </span>
z = 600-450 /100 = .5 NORMSDIST(0.5) = .691462<span><span>
z = 400-450 /100 = -.5 NORMSDIST(-0.5) = .30854
P( -.5 < z <.5) = .691462 - .30854 = .3829 Or 38.29%
Receiving score of 630:
z = 630-450 /100 = 1.8 NORMSDIST(1.8) = .9641
96.41% score less and 3.59 % score better
upper 25%
z = NORMSINV(0.75)= .6745
.6745 *100 + 450 = 517 Would need score >517 to be considered for admissions
</span><span>
Question 4: </span>
The z-score for 45cm is found as follows:</span>
Reference to a normal distribution table, gives the cumulative probability as 0.0099.<span>
Therefore about 1% of newborn girls will be 45cm or shorter.</span>
(300g^2) / (0.0005g) = 600,000g = 6 x 10^5g