<em>Hey</em><em>!</em><em>!</em><em>!</em>
<em><</em><em>a</em><em> </em><em>and</em><em> </em><em><</em><em>b</em><em> </em><em> </em><em>are</em><em> </em><em><u> </u></em><em><u>co</u></em><em><u>mpl</u></em><em><u>e</u></em><em><u>m</u></em><em><u>e</u></em><em><u>n</u></em><em><u>t</u></em><em><u>a</u></em><em><u>r</u></em><em><u>y</u></em><em><u> </u></em><em><u>angles</u></em><em><u>.</u></em>
<em><u>Those</u></em><em><u> </u></em><em><u>angles</u></em><em><u> </u></em><em><u>which</u></em><em><u> </u></em><em><u>are</u></em><em><u> </u></em><em><u>exactly</u></em><em><u> </u></em><em><u>9</u></em><em><u>0</u></em><em><u> </u></em><em><u>degree</u></em><em><u> </u></em><em><u>are</u></em><em><u> </u></em><em><u>called</u></em><em><u> </u></em><em><u>complementary</u></em><em><u> </u></em><em><u>angles</u></em><em><u>.</u></em>
<em><u>hope</u></em><em><u> </u></em><em><u>it</u></em><em><u> </u></em><em><u>helps</u></em><em><u>.</u></em><em><u>.</u></em>
The top row of matrix A (1, 2, 1) is multiplied with the first column of matrix B (1,0,-1) and the result is 1x1 + 2x0 + 1x -1 = 0 this is row 1 column 1 of the resultant matrix
The top row of matrix A (1,2,1) is multiplied with the second column of matrix B (-1, -1, 1) and the result is 1 x-1 + 2 x -1 + 1 x 1 = -2 , this is row 1 column 2 of the resultant matrix
Repeat with the second row of matrix A (-1,-1.-2) x (1,0,-1) = 1 this is row 2 column 1 of the resultant matrix, multiply the second row of A (-1,-1,-2) x (-1,-1,1) = 0, this is row 2 column 2 of the resultant
Repeat with the third row of matrix A( -1,1,-2) x (1,0, -1) = 1, this is row 3 column 1 of the resultant
the third row of A (-1,1,-2) x( -1,-1,1) = -2, this is row 3 column 2 of the resultant matrix
Matrix AB ( 0,-2/1,0/1,-2)
Answer:
c = 5
Step-by-step explanation:
- 6 + 2c = 3c -(6+5)
-6 + 2c = 3c -11
-6 + 11 = 3c- 2c
5 = c
Answer:
(3, -6)
General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Equality Properties
- Multiplication Property of Equality
- Division Property of Equality
- Addition Property of Equality
- Subtraction Property of Equality<u>
</u>
<u>Algebra I</u>
- Coordinates (x, y)
- Terms/Coefficients
- Solving systems of equations using substitution/elimination
Step-by-step explanation:
<u>Step 1: Define Systems</u>
y = 4x - 18
y = -5x + 9
<u>Step 2: Solve for </u><em><u>x</u></em>
<em>Substitution</em>
- Substitute in <em>y</em> [2nd Equation]: 4x - 18 = -5x + 9
- [Addition Property of Equality] Add 5x on both sides: 9x - 18 = 9
- [Addition Property of Equality] Add 18 on both sides: 9x = 27
- [Division Property of Equality] Divide 9 on both sides: x = 3
<u>Step 3: Solve for </u><em><u>y</u></em>
- Substitute in <em>x</em> [1st Equation]: y = 4(3) - 18
- Multiply: y = 12 - 18
- Subtract: y = -6
Answer:
2.05 × 10⁷
Step-by-step explanation:
0.000000205
We'll move the decimal point after the first non-zero digit (as per the scientific notation rules) and the standard form would be :
=> 2.05 × 10⁷